期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:122
Berry-Esseen and Edgeworth approximations for the normalized tail of an infinite sum of independent weighted gamma random variables
Article
Veillette, Mark S.1  Taqqu, Murad S.1 
[1] Boston Univ, Boston, MA 02215 USA
关键词: Berry-Esseen;    Edgeworth expansions;    Infinitely divisible distributions;    Rosenblatt distribution;   
DOI  :  10.1016/j.spa.2011.10.012
来源: Elsevier
PDF
【 摘 要 】

Consider the sum Z = Sigma(infinity)(n=1) lambda(n) (eta(n), - E eta(n)), where eta(n), are independent gamma random variables with shape parameters r(n) > 0, and the lambda(n)'s aree predetermined weights. We study the asymptotic behavior of the tail Sigma(infinity)(n=M) lambda(n)(eta(n) - E eta(n)), which is asymptotically normal under certain conditions. We derive a Berry-Esseen bound and Edgeworth expansions for its distribution function. We illustrate the effectiveness of these expansions on an infinite sum of weighted chi-squared distributions. The results we obtain are directly applicable to the study of double Wiener-Ito integrals and to the Rosenblatt distribution. (C) 2011 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2011_10_012.pdf 333KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次