期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:123
Block sampling under strong dependence
Article
Zhang, Ting1  Ho, Hwai-Chung2  Wendler, Martin3  Wu, Wei Biao4 
[1] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
[2] Acad Sinica, Inst Stat Sci, Taipei 115, Taiwan
[3] Ruhr Univ Bochum, Fak Math, Bochum, Germany
[4] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
关键词: Asymptotic normality;    Covariance;    Hermite processes;    Linear processes;    Long-range dependence;    Rosenblatt distribution;   
DOI  :  10.1016/j.spa.2013.02.006
来源: Elsevier
PDF
【 摘 要 】

The paper considers the block sampling method for long-range dependent processes. Our theory generalizes earlier ones by Hall et al. (1998) [11] on functionals of Gaussian processes and Nordman and Lahiri (2005) [16] on linear processes. In particular, we allow nonlinear transforms of linear processes. Under suitable conditions on physical dependence measures, we prove the validity of the block sampling method. Its finite-sample performance is illustrated by a simulation study. (C) 2013 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2013_02_006.pdf 247KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次