期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:129
Malliavin and Dirichlet structures for independent random variables
Article
Decreusefond, Laurent1  Halconruy, Helene1,2 
[1] Univ Paris Saclay, Telecom ParisTech, LTCI, F-75013 Paris, France
[2] ESME Sudria, F-75015 Paris, France
关键词: Dirichlet structure;    Ewens distribution;    Log-Sobolev inequality;    Malliavin calculus;    Stein's method;    Talagrand inequality;   
DOI  :  10.1016/j.spa.2018.07.019
来源: Elsevier
PDF
【 摘 要 】

On any denumerable product of probability spaces, we construct a Malliavin gradient and then a divergence and a number operator. This yields a Dirichlet structure which can be shown to approach the usual structures for Poisson and Brownian processes. We obtain versions of almost all the classical functional inequalities in discrete settings which show that the Efron-Stein inequality can be interpreted as a Poincare inequality or that the Hoeffding decomposition of U-statistics can be interpreted as an avatar of the Clark representation formula. Thanks to our framework, we obtain a bound for the distance between the distribution of any functional of independent variables and the Gaussian and Gamma distributions. (C) 2018 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2018_07_019.pdf 1018KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次