期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:387
Kernel and eigenfunction estimates for some second order elliptic operators
Article
Ouhabaz, El Maati2  Rhandi, Abdelaziz1 
[1] Univ Salerno, Dept Math, I-84084 Fisciano, SA, Italy
[2] Univ Bordeaux 1, Inst Math IMB, Equipe Anal, F-33405 Talence, France
关键词: Heat kernels;    Schrodinger operators;    Eigenfunctions;    Log-Sobolev inequality;   
DOI  :  10.1016/j.jmaa.2011.09.045
来源: Elsevier
PDF
【 摘 要 】

For a potential V such that V(x) vertical bar x vertical bar(alpha) with alpha > 2 we prove that the heat kernel k(t)(x, y) associated to the uniformly elliptic operator A = -Sigma(n)(j,k=1) partial derivative(k)(a(jk)partial derivative(j)) + V satisfies the estimate k(t)(x, y) <= Ce-mu 0t e(ct-b) (e(-2 root theta/alpha+2 vertical bar x vertical bar 1+alpha/2)/vertical bar x vertical bar(alpha/4+n-1/2))(e(-2 root theta/alpha+2 vertical bar y vertical bar 1+alpha/2)/vertical bar y vertical bar(alpha/4+n-1/2)) for large x, y is an element of R-n and all t > 0. Here 0 < theta <= 1 is an appropriate constant, b > alpha+2/alpha-2 and mu(0) is the first eigenvalue of A. We also obtain an estimate for large vertical bar x vertical bar of the eigenfunctions of A. (C) 2011 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2011_09_045.pdf 169KB PDF download
  文献评价指标  
  下载次数:4次 浏览次数:0次