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Abstract

On any denumerable product of probability spaces, we construct a Malliavin
gradient and then a divergence and a number operator. This yields a Dirich-
let structure which can be shown to approach the usual structures for Pois-
son and Brownian processes. We obtain versions of almost all the classical
functional inequalities in discrete settings which show that the Efron-Stein
inequality can be interpreted as a Poincaré inequality or that the Hoeffding
decomposition of U -statistics can be interpreted as an avatar of the Clark
representation formula. Thanks to our framework, we obtain a bound for the
distance between the distribution of any functional of independent variables
and the Gaussian and Gamma distributions.

Keywords: Dirichlet structure, Ewens distribution, log-Sobolev inequality,
Malliavin calculus, Stein’s method, Talagrand inequality
2000 MSC: 60H07

1. Introduction

There are two motivations to the present paper. After some years of de-
velopment, the Malliavin calculus has reached a certain maturity. The most
complete theories are for Gaussian processes (see for instance [30, 41]) and
Poisson point processes (see for instance [1, 36]). When looking deeply at
the main proofs, it becomes clear that the independence of increments plays
a major role in the effectiveness of the concepts. At a very formal level,
independence and stationarity of increments induce the martingale represen-
tation property which by induction entails the chaos decomposition, which
is one way to develop Malliavin calculus for Poisson [31], Lévy processes [33]
and Brownian motion. It thus motivates to investigate the simplest situation
of all with independence: That of a family of independent, non necessarily
identically distributed, random variables.
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The second motivation comes from Stein’s method1. The Stein method
which was initially developed to quantify the rate of convergence in the
Central Limit Theorem [39] and then for Poisson convergence [9], can be
decomposed in three steps (see [13]). In the first step, we have to find
a functional identity which characterizes the target distribution and solve
implicitly or explicitly (as in the semi-group method) the so-called Stein’s
equation. It reduces the computation of the distance to the calculation of

sup
F∈F

(
E [L1F (X)] + E [L2F (X)]

)
,

where F is the class of functions solutions of the Stein equation, which
is related to the set of test functions H induced by the distance we are
considering, L1 and L2 are two functional operators and X is a random
variable whose distribution we want to compare to the target distribution.
For instance, if the target distribution is the Gaussian law on R,

L1F (x) = xF ′(x) and L2F (x) = −F ′′(x).

If the target distribution is the Poisson law of parameter λ,

L1F (n) = n (F (n)− F (n− 1)) and L2F (n) = λ(F (n+ 1)− F (n)).

In the next step, we have to take into account how X is defined and trans-
form L1F such that it can be written as −L2F + remainder. This remainder
is what gives the rate of convergence. To make the transformation of L1F ,
several approaches appeared along the years. One of the most popular ap-
proach (see for instance [5]) is to use exchangeable pairs: Construct a copy
X ′ ofX with good properties which gives another expression of L1F , suitable
to a comparison with L2F . To be more specific, for the proof of the CLT, it
is necessary to create an exchangeable pair (S, S′) with S =

∑n
i=1Xi. This

is usually done by first, choosing uniformly an index I ∈ {1, · · · , n} and
then, replacing XI with X ′ an independent copy of XI , so that the couple
(S, S′ = S −XI +X ′) is an exchangeable pair. This means that

E
[
F (S′) | I = a; Xb, b 6= a

]
= E [F (S) |Xb, b 6= a] . (1)

Actually, it is the right-hand-side of (1) which gave us some clue on how to
proceed when dealing with functionals more general than the sum of random
variables. An alternative to exchangeable pairs, is the size-biased [10] or zero
biased [19] couplings, which again conveniently transform L1F . For Gaussian
approximation, it amounts to find a distribution X∗ such that

E [L1F (X)] = E
[
F ′′(X∗)

]
.

1Giving an exhaustive bibliography about Stein’s method is somehow impossible (ac-
tually, MathSciNet refers more than 500 papers on this subject). The references given
here are only entry points to the items alluded to.
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Note that for S as above, one can choose S∗ = S′. If the distribution of X∗

is absolutely continuous with respect to that of X, with Radon derivative Λ,
we obtain

E [L1F (X)] = E
[
F ′′(X) Λ(X)

]
,

which means that we are reduced to estimate how far Λ is from the constant
random variable equal to 1. This kind of identity, where the second order
derivative is multiplied by a weight factor, is reminiscent to what can be
obtained via integration by parts. Actually, Nourdin and Peccati (see [26])
showed that the transformation step can be advantageously made simple
using integration by parts in the sense of Malliavin calculus. This works
well only if there exists a Malliavin gradient on the space on which X is
defined (see for instance [15]). That is to say, that up to now, this approach
is restricted to functionals of Rademacher [27], Poisson [15, 34] or Gaussian
random variables [32] or processes [11, 12]. Then, strangely enough, the first
example of applications of the Stein’s method which was the CLT, cannot
be handled through this approach. On the one hand, exchangeable pairs
or size-biased coupling have the main drawback to have to be adapted to
each particular version of X. On the other hand, Malliavin integration by
parts are in some sense more automatic but we need to be provided with a
Malliavin structure.

The closest situation to our investigations is that of the Rademacher
space, namely {−1, 1}N, equipped with the product probability ⊗k∈Nµk
where µk is a Bernoulli probability on {−1, 1}.

The gradient on the Rademacher space (see [27, 36]) is usually defined as

D̂kF (X1, · · · , Xn) = E [Xk F (X1, · · · , Xn) |Xl, l 6= k]

= P(Xk = 1)F (X1, · · · ,+1, · · · , Xn)

−P(Xk = −1)F (X1, · · · ,−1, · · · , Xn), (2)

where the±1 are put in the k-th coordinate. It requires, for its very definition
to be meaningful, either that the random variables are real valued or that
they only have two possible outcomes. In what follows, it must be made
clear that all the random variables may leave on different spaces, which are
only supposed to be Polish spaces. That means that in the definition of
the gradient, we cannot use any algebraic property of the underlying spaces.
Some of our applications does concern random variables with finite number
of outcomes but it does not seem straightforward to devise what should be
the weights, replacing P(Xk = 1) and −P(Xk = −1). Furthermore, many
applications, notably those revolving around functional identities, rely not
directly on the gradient D but rather on the operator number L = −δD
where δ is the adjoint, in a sense to be defined later. It turns out that for
the Rademacher space, the operators L̂ = −δ̂D̂ defined according to (2) and
L defined in Definition 2.2 do coincide. Our framework then fully generalizes
what is known about Rademacher spaces.
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Since Malliavin calculus is agnostic to any time reference, we do not even
assume that we have an order on the product space. It is not a major feature
since a denumerable A is by definition in bijection with the set of natural
integers and thus inherits of at least one order structure. However, this
added degree of freedom appears to be useful (see the Clark decomposition
of the number of fixed points of a random permutations in Section 5) and
bears strong resemblance with the different filtrations which can be put on
an abstract Wiener space, via the notion of resolution of the identity [40].
During the preparation of this work, we found strong reminiscences of our
gradient with the map ∆, introduced in [6, 38] for the proof of the Efron-Stein
inequality, defined by

∆kF (X1, · · · , Xn) = E [F |X1, · · · , Xk]−E [F |X1, · · · , Xk−1] .

Actually, our point of view diverges from that of these works as we do not
focus on a particular inequality but rather on the intrinsic properties of our
newly defined gradient.

We would like to stress the fact that our Malliavin-Dirichlet structure
gives a unified framework for many results scattered in the literature. We
hope to give new insights on why these apparently disjointed results (Efron-
Stein, exchangeable pairs, etc.) are in fact multiple sides of the same coin.

We proceed as follows. In Section 2, we define the gradient D and its
adjoint δ, which we call divergence as it appears as the sum of the par-
tial derivatives, as in Rn. We establish a Clark representation formula of
square integrable random variables and an Helmholtz decomposition of vec-
tor fields. Clark formula appears to reduce to the Hoeffding decomposition
of U -statistics when applied to such functionals. We establish a log-Sobolev
inequality, strongly reminding that obtained for Poisson processes [43], to-
gether with a concentration inequality. Then, we define the number operator
L = δD. It is the generator of a Markov process whose stationary distribu-
tion is the tensor probability we started with. We show in Section 4 that we
can retrieve the classical Dirichlet-Malliavin structures for Poisson processes
and Brownian motion as limits of our structures. We borrow for that the
idea of convergence of Dirichlet structures to [8]. The construction of random
permutations in [23], which is similar in spirit to the so-called Feller coupling
(see [3]), is an interesting situation to apply our results since this construc-
tion involves a cartesian product of distinct finite spaces. In Section 5, we
present several applications of our results. In subsection 5.1, we derive the
chaos decomposition of the number of fixed points of a random permutations
under the Ewens distribution. This yields an exact expression for the vari-
ance of this random variable. To the price of an additional complexity, it is
certainly possible to find such a decomposition for the number of k-cycles in
a random permutation. In subection 5.2, we give an analog to Theorem 3.1
of [25, 34], which is a general bound of the Kolmogorov Rubinstein distance
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to a Gaussian or Gamma distribution, in terms of our gradient D. We apply
this to a degenerate U-statistics of order 2.

2. Malliavin calculus for independent random variables

Let A be an at most denumerable set equipped with the counting mea-
sure:

L2(A) =

{
u : A→ R,

∑

a∈A
|ua|2 <∞

}
and 〈u, v〉L2(A) =

∑

a∈A
uava.

Let (Ea, a ∈ A) be a family of Polish spaces. For any a ∈ A, let Ea and
Pa be respectively a σ-field and a probability measure defined on Ea. We
consider the probability space EA =

∏
a∈AEa equipped with the product

σ-field EA = ∨
a∈A
Ea and the tensor product measure P = ⊗

a∈A
Pa.

The coordinate random variables are denoted by (Xa, a ∈ A). For any B ⊂
A, XB denotes the random vector (Xa, a ∈ B), defined on EB =

∏
a∈B Ea

equipped with the probability PB = ⊗
a∈B

Pa.

A process U is a measurable random variable defined on (A×EA, P(A)⊗EA).
We denote by L2(A × EA) the Hilbert space of processes which are square
integrable with respect to the measure

∑
a∈A εa⊗PA (where εa is the Dirac

measure at point a):

‖U‖2L2(A×EA) =
∑

a∈A
E
[
U2
a

]
and 〈U, V 〉L2(A×EA) =

∑

a∈A
E [UaVa] .

Our presentation follows closely the usual construction of Malliavin calculus.

Definition 2.1. A random variable F is said to be cylindrical if there exist
a finite subset B ⊂ A and a function FB : EB −→ L2(EA) such that F =
FB ◦ rB, where rB is the restriction operator:

rB : EA −→ EB

(xa, a ∈ A) 7−→ (xa, a ∈ B).

This means that F only depends on the finite set of random variables (Xa, a ∈
B).

It is clear that S is dense in L2(EA).

The very first tool to be considered is the discrete gradient, whose form
has been motivated in the introduction.

We first define the gradient of cylindrical functionals, for there is no
question of integrability and then extend the domain of the gradient to a
larger set of functionals by a limiting procedure. In functional analysis ter-
minology, we need to verify the closability of the gradient: If a sequence

5
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of functionals converges to 0 and the sequence of their gradients converges,
then it should also converges to 0. This is the only way to guarantee in the
limiting procedure that the limit does not depend on the chosen sequence.

Definition 2.2 (Discrete gradient). For F ∈ S, DF is the process of L2(A×
EA) defined by one of the following equivalent formulations: For all a ∈ A,

DaF (XA) = F (XA)−E [F (XA) | Ga]

= F (XA)−
∫

Ea

F (XAra, xa) dPa(xa)

= F (XA)−E′
[
F (XAra, X

′
a)
]

where X ′a is an independent copy of Xa.

Remark 1. A straightforward calculation shows that for any F,G ∈ S, any
a ∈ A, we have

Da(FG) = F DaG+GDaF −DaF DaG−E [FG | Ga] +E [F | Ga]E [G | Ga] .

This formula has to be compared with the formula D(FG) = F DG+GDF
for the Gaussian Malliavin gradient (see (16) below) and D(FG) = F DG+
GDF +DF DG for the Poisson gradient (see (11) below).

For F ∈ S, there exists a finite subset B ⊂ A such that F = FB ◦ rB.
Thus, for every a /∈ B, F is Ga-measurable and then DaF = 0. This implies
that

‖DF‖2L2(A×EA) = E

[∑

a∈A
|DaF |2

]
= E

[∑

a∈B
|DaF |2

]
<∞,

hence (DaF, a ∈ A) defines an element of L2(A× EA).

Definition 2.3. The set of simple processes, denoted by S0(l2(A)) is the set
of random variables defined on A× EA of the form

U =
∑

a∈B
Ua 1a,

for B a finite subset of A and such that Ua belongs to S for any a ∈ B.

The key formula for the sequel is the so-called integration by parts. It
amounts to compute the adjoint of D in L2(A× EA).

Theorem 2.4 (Integration by parts). Let F ∈ S. For every simple pro-
cess U ,

〈DF,U〉L2(A×EA) = E

[
F
∑

a∈A
DaUa

]
. (3)

6
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Thanks to the latter formula, we are now in position to prove the clos-
ability of D: For (Fn, n ≥ 1) a sequence of cylindrical functionals,

(
Fn

n→∞−−−−−→
L2(EA)

0 and DFn
n→∞−−−−−−−→

L2(A×EA)
η

)
=⇒ η = 0.

Corollary 2.5. The operator D is closable from L2(EA) into L2(A× EA).

We denote the domain of D in L2(EA) by D, the closure of the class of
cylindrical functions with respect to the norm

‖F‖1,2 =
(
‖F‖2L2(EA) + ‖DF‖2L2(A×EA)

) 1
2
.

We could as well define p-norms corresponding to Lp integrability. However,
for the current applications, the case p = 2 is sufficient and the apparent
lack of hypercontractivity of the Ornstein-Ulhenbeck semi-group (see below
Section 2.2) lessens the probable usage of other integrability order.

SinceD is defined as a closure, it is often useful to have a general criterion
to ensure that a functional F , which is not cylindrical, belongs to D. The
following criterion exists as is in the settings of Wiener and Poisson spaces.

Lemma 2.6. If there exists a sequence (Fn, n ≥ 1) of elements of D such
that

1. Fn converges to F in L2(EA),
2. supn ‖DFn‖D is finite,

then F belongs to D and DF = limn→∞DFn in D.

2.1. Divergence
We can now introduce the adjoint of D, often called the divergence as

for the Lebesgue measure on Rn, the usual divergence is the adjoint of the
usual gradient.

Definition 2.7 (Divergence). Let

Dom δ =
{
U ∈ L2(A× EA) :

∃ c > 0, ∀F ∈ D, |〈DF,U〉L2(A×EA)| ≤ c ‖F‖L2(EA)

}
.

For any U belonging to Dom δ, δU is the element of L2(EA) characterized
by the following identity

〈DF,U〉L2(A×EA) = E [F δU ] , for all F ∈ D.

The integration by parts formula (3) entails that for every U ∈ Dom δ,

δU =
∑

a∈A
DaUa.

7



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

In the setting of Malliavin calculus for Brownian motion, the divergence
of adapted processes coincide with the Itô integral and the square moment of
δU is then given by the Itô isometry formula. We now see how this extends
to our situation.

Definition 2.8. The Hilbert space D(l2(A)) is the closure of S0(l2(A)) with
respect to the norm

‖U‖2D(l2(A)) = E

[∑

a∈A
|Ua|2

]
+ E

[∑

a∈A

∑

b∈A
|DaUb|2

]
.

In particular, this means that the mapDU = (DaUb, a, b ∈ A) is Hilbert-
Schmidt as a map from L2(A × EA) into itself. As a consequence, for two
such maps DU and DV , the map DU ◦DV is trace-class (see [44]) with

trace(DU ◦DV ) =
∑

a,b∈A
DaUb DbVa.

The next formula is the counterpart of the Itô isometry formula for the
Brownian motion, sometimes called the Weitzenböck formula (see [36, Eqn.
(4.3.3)]) in the Poisson settings.

Theorem 2.9. The space D(l2(A)) is included in Dom δ. For any U, V
belonging to D(l2(A)),

E [δU δV ] = E [trace(DU ◦DV )] . (4)

Remark 2. It must be noted that compared to the analog identity for the
Brownian and the Poisson settings, the present formula is slightly different.
For both processes, with corresponding notations, we have

‖δU‖2L2 = ‖U‖2L2 + trace(DU ◦DV ).

The absence of the term ‖U‖2L2 gives to our formula a much stronger re-
semblance to the analog equation for the Lebesgue measure. As in this latter
case, we do have here δ1 = 0 whereas for the Brownian motion, it yields the
Itô integral of the constant function equal to one.

If A = N, let Fn = σ{Xk, k ≤ n} and assume that U is adapted, i.e. for
all n ≥ 1, Un ∈ Fn. Then, DnUk = 0 as soon as n > k, hence

E
[
δU2

]
= E

[ ∞∑

n=1

(
Un −E [Un | Fn−1]

)2
]
,

i.e. E
[
δU2

]
is the L2(N × EN)-norm of the innovation process associated

to U , which appears in filtering theory.

8
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2.2. Ornstein-Uhlenbeck semi-group and generator
Having defined a gradient and a divergence, one may consider the Laplacian-

like operator defined by L = −δD, which is also called the number operator
in the settings of Gaussian Malliavin calculus.

Definition 2.10. The number operator, denoted by L, is defined on its do-
main

DomL =

{
F ∈ L2(EA) : E

[∑

a∈A
|DaF |2

]
<∞

}

by
LF = −δDF = −

∑

a∈A
DaF. (5)

The map L can be viewed as the generator of a symmetric Markov process
X, which is ergodic, whose stationary probability is PA. Assume first that A
is finite. Consider (Z(t), t ≥ 0) a Poisson process on the half-line of rate |A|,
and the process X(t) = (X1(t), · · · , XN (t), t ≥ 0) which evolves according
to the following rule: At a jump time of Z,

• Choose randomly (with equiprobability) an index a ∈ A,

• Replace Xa by an independent random variable X ′a distributed accord-
ing to Pa.

For every x ∈ EA, a ∈ A, set x¬a = (x1, · · · , xa−1, xa+1, · · · , x|A|). The
generator of the Markov process X is clearly given by

|A|
∑

a∈A

1

|A|

∫

Ea

(
F (x¬a, x′a)− F (x)

)
dPa(x

′
a) = −

∑

a∈A
DaF (x).

The factor |A| is due to the intensity of the Poisson process Z which jumps
at rate |A|, the factor |A|−1 is due to the uniform random choice of an index
a ∈ A. Thus, for a finite set A, L coincides with the generator of X. If we
denote by P = (Pt, t ≥ 0) the semi-group of X: For any x ∈ EA, for any
bounded f : EA → R,

Ptf(x) = E [f(X(t)) |X(0) = x] .

Then, (Pt, t ≥ 0) is a strong Feller semi-group on L∞(EA). This result still
holds when EA is denumerable.

Theorem 2.11. For any denumerable set A, L defined as in (5) generates
a strong Feller continuous semi-group (Pt, t ≥ 0) on L∞(EA).

As a consequence, there exists a Markov process X whose generator is L
as defined in (5). It admits as a core (a dense subset of its domain) the set
of cylindrical functions.

9
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From the sample-path construction of X, the next result is straightfor-
ward for A finite and can be obtained by a limiting procedure for A denu-
merable.

Theorem 2.12 (Mehler formula). For a ∈ A, xa ∈ EA and t > 0, let
Xa(xa, t) the random variable defined by

Xa(xa, t) =

{
xa with probability (1− e−t),
X ′a with probability e−t,

where X ′a is a Pa-distributed random variable independent from everything
else. In other words, if P xa,ta denotes the distribution of Xa(xa, t), P

xa,t
a is a

convex combination of εxa and Pa:

P xa,ta = (1− e−t) εxa + e−tPa.

For any x ∈ EA, any t > 0,

PtF (x) =

∫

EA

F (y) ⊗
a∈A

dPxa,t
a (ya).

It follows easily that (Pt, t ≥ 0) is ergodic and stationary:

lim
t→∞

PtF (x) =

∫

EA

F dP and X(0)
law
= P =⇒ X(t)

law
= P.

We then retrieve the classical formula (in the sense that it holds as is for
Brownian motion and Poisson process) of commutation between D and the
Ornstein-Uhlenbeck semi-group.

Theorem 2.13. Let F ∈ L2(EA). For every a ∈ A, x ∈ EA,

DaPtF (x) = e−tPtDaF (x). (6)

3. Functional identities

This section is devoted to several functional identities which constitute
the crux of the matter if we want to do some computations with our new
tools.

It is classical that the notion of adaptability is linked to the support of
the gradient.

Lemma 3.1. Assume that A = N and let Fn = σ{Xk, k ≤ n}. For any
F ∈ D, F is Fk-measurable if and only if DnF = 0 for any n > k. As a
consequence, DF = 0 if and only if F = E [F ].

It is also well known that, in the Brownian of Poisson settings, D and
conditional expectation commute.

10
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Lemma 3.2. For any F ∈ D, for any k ≥ 1, we have

Dk E [F |Fk] = E [DkF | Fk] . (7)

The Brownian martingale representation theorem says that a martin-
gale adapted to the filtration of a Brownian motion is in fact a stochastic
integral. The Clark formula gives the expression of the integrand of this
stochastic integral in terms of the Malliavin gradient of the terminal value
of the martingale. We here have the analogous formula.

Theorem 3.3 (Clark formula). For A = N and F ∈ D,

F = E [F ] +

∞∑

k=1

Dk E [F | Fk] .

If A is finite and if there is no privileged order on A, we can write

F = E [F ] +
∑

B⊂A

(|A|
|B|

)−1 1

|B|
∑

b∈B
DbE [F |XB] .

The chaos decomposition is usually deduced from the Clark formula by
iteration. If we apply Clark formula to E [F | Fk], we get

DkE [F | Fk] =

∞∑

j=1

DkDjE [F | Fj∧k] = DkE [F | Fk] ,

since j > k implies DjE [F | Fk] = 0 in view of Lemma 3.1. Furthermore,
the same holds when k > j since it is easily seen that DjDk = DkDj . For
j = k, simply remark that DkDk = Dk. Hence, it seems that we cannot go
further this way to find a potential chaos decomposition.

As mentioned in the Introduction, it may be useful to reverse the time
arrow. Choose an order on A so that A can be seen as N. Then, let

Hn = σ{Xk, k > n}.

and for any n ∈ {0, · · · , N − 1},

HNn = Hn ∩ FN and HNk = F0 = {∅, EA} for k ≥ N.

Note that HN0 = FN and as in Lemma 3.1, F is Hk-measurable if and only
if DnF = 0 for any n ≤ k.

Theorem 3.4. For every F in D,

F = E [F ] +

∞∑

k=1

Dk E [F |Hk−1] .

11
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In the present context, the next result is a Poincaré type inequality as
it gives a bound for the variance of F in terms of the oscillations of F . In
other context, it turns to be called the Efron-Stein inequality [6]. It can be
noted that both the statement and the proof are similar in the Brownian
and Poisson settings.

Corollary 3.5 (Poincaré or Efron-Stein inequality). For any F ∈ D,

var(F ) ≤ ‖DF‖2L2(A×EA).

Another corollary of the Clark formula is the following covariance iden-
tity.

Theorem 3.6 (Covariance identity). For any F,G ∈ D,

cov(F,G) = E

[∑

k∈A
DkE [F | Fk] DkG

]
. (8)

As for the other versions of the Malliavin calculus (Brownian, Poisson
and Rademacher), from (6), can be deduced another covariance identity.

Theorem 3.7. For any F,G ∈ D,

cov(F,G) = E

[∑

k∈A
DkF

∫ ∞

0
e−tPtE [DkG|Fk] dt

]
. (9)

Then, using the so-called Herbst principle, we can derive a concentration
inequality, which, as usual, requires an L∞ bound on the derivative of the
functional to be valid.

Theorem 3.8 (Concentration inequality). Let F for which there exists an
order on A with

M = sup
X∈EA

∞∑

k=1

|DkF (X)|E [|DkF (X)| | Fk] <∞.

Then, for any x ≥ 0, we have

P(F −E [F ] ≥ x) ≤ exp

(
− x2

2M

)
·

In the Gaussian case, the concentration inequality is deduced from the
logarithmic Sobolev inequality. This does not seem to be feasible in the
present context because D is not a derivation, i.e. does not satisfy D(FG) =
F DG+GDF . However, we still have an LSI identity. For the proof of it, we
follow closely the proofs of [35, 43]. They are based on two ingredients: The
Itô formula and the martingale representation theorem. We get an ersatz of

12
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the former but the latter seems inaccessible as we do not impose the random
variables to live in the same probability space and to be real valued. Should
it be the case, to the best of our knowledge, the martingale representation
formula is known only for the Rademacher space [42, Section 15.1], which
is exactly the framework of [35]. This lack of a predictable representation
explains the conditioning in the denominator of (10).

Theorem 3.9 (Logarithmic Sobolev inequality). Let a positive random vari-
able G ∈ L logL(EA). Then,

E [G logG]−E [G] logE [G] ≤
∑

k∈A
E

[ |DkG|2
E [G | Gk]

]
. (10)

In the usual vector calculus on R3, the Helhmoltz decomposition stands
that a sufficiently smooth vector field can be resolved in the sum of a curl-
free vector field and a divergence-free vector field. We have here the exact
counterpart with our definition of gradient.

Theorem 3.10 (Helhmoltz decomposition). Let U ∈ D(l2(A)). There exists
a unique couple (ϕ, V ) where ϕ ∈ L2(EA) and V ∈ L2(A × EA) such that
E [ϕ] = 0, δV = 0 and

Ua = Daϕ+ Va,

for any a ∈ A.

4. Dirichlet structures

We now show that the usual Poisson and Brownian Dirichlet structures,
associated to their respective gradient, can be retrieved as limiting structures
of convenient approximations. This part is directly inspired by [8] where
with our notations, the Xa’s are supposed to be real valued, independent
and identically distributed and the gradient be the ordinary gradient on RA.

For the definitions and properties of Dirichlet calculus, we refer to the
first chapter of [7]. On (EA,PA), we have already implicitly built a Dirichlet
structure, i.e. a Markov process X, a semi-group P and a generator L
(see subsection 2.2). It remains to define the Dirichlet form EA such that
EA(F ) = E [F LF ] for any sufficiently regular functional F .

Definition 4.1. For F ∈ D, define

EA(F ) = E

[∑

a∈A
|DaF |2

]
= ‖DF‖2L2(A×EA).

The integration by parts formula means that this form is closed. Since
we do not assume any property on Ea for any a ∈ A and since we do not
seem to have a product rule formula for the gradient, we cannot assert more

13
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properties for EA. However, following [8], we now show that we can recon-
struct the usual gradient structures on Poisson and Wiener spaces as well
chosen limits of our construction. For these two situations, we have a Polish
space W , equipped with B its Borelean σ-field and a probability measure P.
There also exists a Dirichlet form E defined on a set of functionals D. Let
(EN , AN ) be a sequence of Polish spaces, all equipped with a probability
measure PN and their own Dirichlet form EN , defined on DN . Consider
maps UN from EN into W such that (UN )∗PN , the pullback measure of PN

by UN , converges in distribution to P. We assume that for any F ∈ D, the
map F ◦ UN belongs to DN . The image Dirichlet structure is defined as
follows. For any F ∈ D,

EUN (F ) = EN (F ◦ UN ).

We adapt the following definition from [8].

Definition 4.2. With the previous notations, we say that ((UN )∗PN , N ≥
1) converges as a Dirichlet distribution whenever for any F ∈ Lip∩D,

lim
N→∞

EUN (F ) = E(F ).

4.1. Poisson point process
Let Y be a compact Polish space and NY be the set of weighted config-

urations, i.e. the set of locally finite, integer valued measures on Y. Such a
measure is of the form

ω =

∞∑

n=1

pn εζn ,

where (ζn, n ≥ 1) is a set of distinct points in Y with no accumulation point,
(pn, n ≥ 1) any sequence of positive integers. The topology on NY is defined
by the semi-norms

pf (ω) =

∣∣∣∣∣
∞∑

n=1

pn f(ζn)

∣∣∣∣∣ ,

when f runs through the set of continuous functions on Y. It is known (see
for instance [22]) that NY is then a Polish space for this topology. For some
finite measure M on Y, we put on NY, the probability measure P such that
the canonical process is a Poisson point process of control measure M, which
we consider without loss of generality, to have total mass M(Y) = 1.

On NY, it is customary to consider the difference gradient (see [14, 31,
36]): For any x ∈ Y, any ω ∈ NY,

DxF (ω) = F (ω + εx)− F (ω). (11)

Set

DP =

{
F : NY → R such that E

[∫

Y
|DxF |2 dM(x)

]
<∞

}
,

14
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and for any F ∈ DP ,

E(F ) = E

[∫

Y
|DxF |2 dM(x)

]
. (12)

To see the Poisson point process as a Dirichlet limit, the idea is to parti-
tion the set Y into N parts, CN1 , · · · , CNN such that M(CNk ) = pNk and then
for each k ∈ {1, · · · , N}, take a point ζNk into CNk so that the Poisson point
process ω on Y with intensity measure M is approximated by

ωN =

N∑

k=1

ω(CNk ) εζNk
.

We denote by PN the distribution of ωN . By computing its Laplace trans-
form, it is clear that PN converges in distribution to P. It remains to see
this convergence holds in the Dirichlet sense for the sequence of Dirichlet
structures induced by our approach for independent random variables.

Let (ζNk , k = 1, · · · , N) (respectively (pNk , k = 1, · · · , N)) be a triangular
array of points in Y (respectively of non-negative numbers) such that the
following two properties hold:
1) the pNk ’s tends to 0 uniformly:

pN = sup
k≤N

pNk = O

(
1

N

)
; (13)

2) the ζNk ’s are sufficiently well spread so that we have convergence of Rie-
mann sums: For any continuous and M-integrable function f : Y→ R, we
have

N∑

k=1

f(ζNk ) pNk
N→∞−−−−→

∫
f(x) dM(x). (14)

Take f = 1 implies that
∑

k p
N
k tends to 1 as N goes to infinity.

For any N and any k ∈ {1, · · · , N}, let µNk be the Poisson distribution on
N, of parameter pNk . In this situation, let EN = NN with µN = ⊗Nk=1µ

N
k .

That means we have independent random variables MN
1 , · · · ,MN

N , where
MN
k follows a Poisson distribution of parameter pNk for any k ∈ {1, · · · , N}.

We turn these independent random variables into a point process by the map
UN defined as

UN : NN −→ NY

(m1, · · · ,mN ) 7−→
N∑

k=1

mk εζNk
.

15
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Lemma 4.3. For any F ∈ DP ,

EUN (F )

=
N∑

m=1

∞∑

`=0

E



( ∞∑

τ=0

(
F (ωN(m) + `εζNm )− F (ωN(m) + τεζNm )

)
µNm(τ)

)2

µNm(`),

(15)

where ωN(m) =
∑

k 6=mM
N
k εζNk

.

Proof. According its very definition,

EUN (F ) =
N∑

m=1

E



(
F (ωN(m) +MN

m εζNm )−
∞∑

τ=0

F (ωN(m) + τεζNm )µNm(τ)

)2

 .

The result follows by conditioning with respect toMN
m , whose law is µNm.

Since the vague topology on NY is metrizable, one could define Lipschitz
functions with respect to this distance. However, this turns out to be not
sufficient for the convergence to hold.

Definition 4.4. A function F : NY → R is said to be TV− Lip if F is
continuous for the vague topology and if for any ω, η ∈ NY,

|F (ω)− F (η)| ≤ distTV(ω, η),

where distTV represents the distance in total variation between two point
measures, i.e. the number of distinct points counted with multiplicity.

Theorem 4.5. For any F ∈ TV− Lip∩DP , with the notations of Lemma [4.3]
and (12),

EUN (F )
N→∞−−−−→ E(F ).

4.2. Brownian motion
For details on Gaussian Malliavin calculus, we refer to [30, 41]. We now

consider P as the Wiener measure on W = C0([0, 1];R). Let (hk, k ≥ 1) be
an orthonormal basis of the Cameron-Martin space H,

H =

{
f : [0, 1]→ R, ∃ḟ ∈ L2 with f(t) =

∫ t

0
ḟ(s) ds

}
and ‖f‖H = ‖ḟ‖L2 .

A function F : W → R is said to be cylindrical if it is of the form

F (ω) = f(δBv1, · · · , δBvn),

16



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

where v1, · · · , vn belong to H,

δBv =

∫ 1

0
v(s) dω(s)

is the Wiener integral of v and f belongs to the Schwartz space S(Rn). For
h ∈ H,

∇hF (ω) =
n∑

k=1

∂f

∂xk
(δBv1, · · · , δBvn)hk. (16)

The map ∇ is closable from L2(W ;R) to L2(W ;H). Thus, it is meaningful
to define DB as the closure of cylindrical functions for the norm

‖F‖1,2 = ‖F‖L2(W ) + ‖∇F‖L2(W ;H).

Definition 4.6. A function F : W → R is said to be H-C1 if

• for almost all ω ∈W , h 7−→ F (ω + h) is a continuous function on H,

• for almost all ω ∈ W , h 7−→ F (ω + h) is continuously Fréchet differ-
entiable and this Fréchet derivative is continuous from H into R⊗H.

We still denote by ∇F the element of H such that

d

dτ
F (ω + τh)

∣∣∣∣
τ=0

= 〈∇F (ω), h〉H .

For N ≥ 1, let

eNk (t) =
√
N 1[(k−1)/N, k/N)(t) and hNk (t) =

∫ t

0
eNk (s) ds.

The family (hNk , k = 1, · · · , N) is then orthonormal in H. For (Mk, k =
1, · · · , N) a sequence of independent identically distributed random vari-
ables, centered with unit variance, the random walk

ωN (t) =
N∑

k=1

Mk h
N
k (t), for all t ∈ [0, 1],

is known to converge in distribution in W to P. Let EN = RN equipped
with the product measure PN = ⊗Nk=1ν where ν is the standard Gaussian
measure on R. We define the map UN as follows:

UN : EN −→W

m = (m1, · · · ,mN ) 7−→
N∑

k=1

mk h
N
k .

It follows from our definition that:

17
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Lemma 4.7. For any F ∈ L2(W ;R),

EUN (F ) =
N∑

k=1

E

[(
F (ωN )−E′

[
F (ωN(k) +M ′k h

N
k )
])2
]
,

where ωN(k) = ωN − Mk h
N
k and M ′k is an independent copy of Mk. The

expectation is taken on the product space RN+1 equipped with the measure
PN ⊗ ν.

The definition of Lipschitz function we use here is the following:

Definition 4.8. A function F : W → R is said to be Lipschitz if it is H-C1

and for almost all ω ∈W ,

|〈∇F (ω), h〉| ≤ ‖ḣ‖L1 .

In particular since eNk ≥ 0, this implies that

|〈∇F (ω), hNk 〉| ≤ hNk (1)− hNk (0) =
1√
N
·

For F ∈ DB ∩H-C1, we have

F (ω + h)− F (ω) = 〈∇F (ω), h〉H + ‖ḣ‖L1 ε(ω, h), (17)

where ε(ω, h) is bounded and goes to 0 in L2, uniformly with as ‖ḣ‖L1 tends
to 0.

Theorem 4.9. For any F ∈ DB ∩H-C1,

EUN (F )
N→∞−−−−→ E

[
‖∇F‖2H

]
= E(F ).

5. Applications

5.1. Representations
We now show that our Clark decomposition yields interesting decompo-

sition of random variables. For U -statistics, it boils down to the Hoeffding
decomposition.

Definition 5.1. For an integer m, let h : Rm → R be a symmetric function,
and X1, · · · , Xn, n random variables supposed to be independent and iden-
tically distributed. The U -statistics of degree m and kernel h is defined, for
any n ≥ m by

Un = U(X1, · · · , Xn) =

(
n

m

)−1 ∑

A∈([n],m)

h(XA)

where ([n],m) denotes the set of ordered subsets A ⊂ [n] = {1, · · · , n}, of
cardinality m.

More generally, for a set B, (B,m) denotes the set of subsets of B with
m elements.

18
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If E [|h(X1, · · · , Xm)|] is finite, we define hm = h and for 1 ≤ k ≤ m− 1,

hk(X1, · · · , Xk) = E [h(X1, · · · , Xm) |X1, · · · , Xk] .

Let θ = E [h(X1, · · · , Xm)], consider g1(X1) = h1(X1)− θ, and

gk(X1, · · · , Xk) = hk(X1, · · · , Xk)− θ −
k−1∑

j=1

∑

B∈([k],j)

gj(XB),

for any 1 ≤ k ≤ m. Since the variables X1, · · · , Xn are independent and
identically distributed, and the function h is symmetric, the equality

E [h(XA∪B) |XB] = E [h(XC∪B) |XB] ,

holds for any subsets A and C of [n]\B, of cardinality n− k.
Theorem 5.2 (Hoeffding decomposition of U-statistics, [24]). For any in-
teger n, we have

Un = θ +
m∑

k=1

H(k)
n (18)

where H(k)
n is the U -statistics based on kernel gk, i.e. defined by

H(k)
n =

(
n

k

)−1 ∑

B⊂([n],k)

gk(XB).

As mentioned above, reversing the natural order of A, provided that it
exists, can be very fruitful. We illustrate this idea by the decomposition of
the number of fixed points of a random permutation under Ewens distribu-
tion. It could be applied to more complex functionals of permutations but
to the price of increasingly complex computations.

For every integerN , denote bySN the space of permutations on {1, · · · , N}.
We always identify SN as the subgroup of SN+1 stabilizing the element
N + 1. For every k ∈ {1, · · · , N}, define Jk = {1, · · · , k} and

J = J1 × J2 × · · · × JN .
The coordinate map from J to Jk is denoted by Ik. Following [23], we have

Theorem 5.3. There exists a natural bijection Γ between J and SN .

Proof. To a sequence (i1, · · · , iN ) where ik ∈ Jk, we associate the permuta-
tion

Γ(i1, · · · , iN ) = (N, iN ) ◦ (N − 1, iN−1) . . . ◦ (2, i2).

where (i, j) denotes the transposition between the two elements i and j.
To an element σN ∈ SN , we associate iN = σN (N). Then, N is a fixed

point of σN−1 = (N, iN ) ◦σN , hence it can be identified as an element σN−1

of SN−1. Then, iN−1 = σN−1(N − 1) and so on for decreasing indices.
It is then clear that Γ is one-to-one and onto.
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In [23], Γ is described by the following rule: Start with permutation
σ1 = (1), if at the N -th step of the algorithm, we have iN = N then the
current permutation is extended by leaving N fixed, otherwise, N is inserted
in σN−1 just before iN in the cycle of this element. This construction is
reminiscent of the Chinese restaurant process (see [3]) where iN is placed
immediately after N . An alternative construction of permutations is known
as the Feller coupling (see [3]). In our notations, it is given by

σ1 = (1); σN = σN−1 ◦ (σ−1
N−1(iN ), N).

Definition 5.4 (Ewens distribution). For some t ∈ R+, for any k ∈
{1, · · · , N}, consider the measure Pk defined on Jk by

Pk({j}) =





1

t+ k − 1
if j 6= k,

t

t+ k − 1
for j = k.

Under the distribution P = ⊗kPk, the random variables (Ik, k = 1, · · · , N)
are independent with law given by P(Ik = j) = Pk({j}), for any k.

The Ewens distribution of parameter t on SN , denoted by Pt, is the
push-forward of P by the map Γ.

A moment of thought shows that a new cycle begins in the first construc-
tion for each index where ik = k. Moreover, it can be shown that

Theorem 5.5 (see [23]). For any σ ∈ SN ,

Pt({σ}) =
tcyc(σ)

(t+ 1)(t+ 2)× · · · × (t+N − 1)
,

where cyc(σ) is the number of cycles of σ.

For any F , a measurable function on SN , we have the following diagram

(J , ⊗Nk=1Pk)

(SN , P
t) R

Γ F̃ = F ◦ Γ

F

We denote by i = (i1, · · · , iN ) a generic element of J and by σ = Γ(i).
Let C1(σ) denote the number of fixed points of the permutation σ and

C̃1 = C1 ◦ Γ. For any k ∈ JN , the random variable Uk(σ) is the indicator
of the event (k is a fixed point of σ) and let ŨNk = Uk ◦ Γ. The Clark
formula with reverse filtration shows that we can write ŨNk as a sum of
centered orthogonal random variables as in the Hoeffding decomposition of
U-statistics (see Theorem 5.2).
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Theorem 5.6. For any k ∈ {1, · · · , N},

Ũk = 1(Ik=k)1(Im 6=k, m∈{k+1,··· ,N}). (19)

and under Pt, ŨNk is Bernoulli distributed with parameter tpkαk, where for
any k ∈ {1, · · · , N},

pk =
1

t+ k − 1
and αk =

N∏

j=k+1

j − 1

t+ j − 1
·

Moreover,

ŨNk = tpkαk +
(
1(Ik=k) − tpk

) N∏

m=k+1

1(Im 6=k)

− tpk
N−k−1∑

j=1

t+ k − 1

t+ k + j − 2

(
1(Ik+j=k) − pk+j

) N−k∏

l=j+1

1(Ik+l 6=k).

Since

C̃1 =
N∑

k=1

ŨNk ,

we retrieve the result of [4]:

E
[
C̃1

]
=

tN

t+N − 1
,

and the following decomposition of C̃1 can be easily deduced from the pre-
vious theorem.

Theorem 5.7. We can write

C̃1 = t

(
1− t− 1

N + t− 1

)
+

N∑

l=1

DlŨ
N
l +

N∑

l=2

t

t+ l − 2
Dl

(
l−1∑

k=1

N∏

m=l

1(Im 6=k)

)

= t

(
1− t− 1

N + t− 1

)
+

N∑

l=1

(1(Il=l) −
t

t+ l − 1
)

N∏

m=l+1

1(Im 6=l)

−
N−1∑

l=2

t

t+ l − 2

l−1∑

k=1

(
1(Il=k) −

1

t+ l − 1

) N∏

m=l+1

1(Im 6=k).

Remark 3. Note that such a decomposition with the natural order on N
would be infeasible since the basic blocks of the definition of C̃1, namely the
Ũk, are anticipative (following the vocabulary of Gaussian Malliavin calcu-
lus), i.e. Ũk ∈ σ(Ik+l, l = 0, · · · , N − k).
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This decomposition can be used to compute the variance of C̃1. To the
best of our knowledge, this is the first explicit, i.e. not asymptotic, expression
of it.

Theorem 5.8. For any t ∈ R, we get

var[C̃1] =
Nt

t+N − 1

(
t

t+N − 1
+ 1− 2t2

N

N∑

k=1

1

t+ k − 1

)
·

We retrieve
var [C̃1] −−−−→

N→∞
t,

as can be expected from the Poisson limit.

5.2. Stein-Malliavin criterion
For (E, d) a Polish space, let M1(E) the set of probability measures

on E. It is usually equipped with the weak convergence generated by the
semi-norms

pf (P) =

∣∣∣∣
∫

E
f dP

∣∣∣∣
for any f bounded and continuous from E to R. Since E is Polish, we
can find a denumerable family of bounded continuous functions (fn, n ≥ 1)
which generates the Borelean σ-field on E and the topology of the weak
convergence can be made metric by considering the distance:

ρ(P,Q) =
∞∑

n=1

2−n ψ(pfn(P−Q))

where ψ(x) = x/(1 + x). Unfortunately, this definition is not prone to
calculations so that it is preferable to use the Kolmogorov-Rubinstein (or
Wasserstein-1) distance defined by

κ(P,Q) = sup
ϕ∈Lip1

∣∣∣∣
∫

E
ϕdP−

∫

E
ϕdQ

∣∣∣∣

where
ϕ ∈ Lipr ⇐⇒ sup

x 6=y∈E

|ϕ(x)− ϕ(y)|
d(x, y)

≤ r.

Theorem 11.3.1 of [16] states that the distances κ and ρ yield the same
topology. When E = R, the Stein’s method is one efficient way to compute
the κ distance between a measure and the Gaussian distribution. If E = Rn,
for technical reasons, it is often assumed that the test functions are more
regular than simply Lipschitz continuous and we are led to compute

κH(P,Q) = sup
ϕ∈H

∣∣∣∣
∫

E
ϕdP−

∫

E
ϕdQ

∣∣∣∣
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where H is a space included in Lip1 like the set of k-times differentiable
functions with derivatives up to order k bounded by 1.

The setting in which we need to compute a KR distance is very often
the situation in which we have another Polish space G with a probability
measure µ and a random variable F with value in E. The objective is then
to compare some measure P on E and PF = F∗µ the distribution of F , i.e.
the push-forward of µ by the application F . This means that we have to
compute

sup
ϕ∈H

∣∣∣∣
∫

E
ϕdP−

∫

G
ϕ ◦ F dµ

∣∣∣∣ . (20)

As mentioned in Section 1, when using the Stein’s method, we first charac-
terize P by a functional identity and then use different tricks to transform
(20) in a more tractable expression. The usual tools are exchangeable pairs,
coupling or Malliavin integration by parts. For the latter to be possible re-
quires that we do have a Malliavin structure on the measured space (G,µ).
In [25, 34], generic theorems are given which link κH(P,PF ) with some func-
tionals of the gradient of F . For instance, if (G,µ) is the space of locally
finite configurations on a space g, equipped with the Poisson distribution of
control measure σ and P is the Gaussian distribution in R,

κH(P,PF ) ≤ E

[∣∣∣∣1−
∫

g
DzF DzL

−1F dσ(z)

∣∣∣∣
]

+

∫

g
E
[
|DzF |2|DzL

−1F |
]

dσ(z), (21)

where D is the Poisson-Malliavin gradient (see Eqn. (11)), L = D∗D the
associated generator and the Stein class F is the space of twice differentiable
functions with first derivative bounded by 1 and second order derivative
bounded by 2. In [17], an analog result is given when P is a Gamma dis-
tribution and (G,µ) is either a Poisson or a Gaussian space. To the best of
our knowledge, when µ is the distribution of a family of independent ran-
dom variables, the distance κH(P,PF ) is evaluated through exchangeable
pairs or coupling, which means to construct an ad-hoc structure for each
situation at hand. We intend to give here an exact analog to (21) in this
situation using only our newly defined operator D. Our first result concerns
the Gaussian approximation. To the best of our knowledge, there does not
yet exist a Stein criterion for Gaussian approximation which does not rely
on exchangeable pairs or any other sort of coupling.

Remark 4. In what follows, we deal with functions F defined on EA, that
means that F is a function of XA and as such, we should use the notation
F (XA). For the sake of notations, we identify F and F (XA).
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Theorem 5.9. Let P denote the standard Gaussian distribution on R. For
any F : EA → R such that E [F ] = 0 and F ∈ DomD. Then,

κH(P,PF ) ≤ E

[∣∣∣∣∣1−
∑

a∈A
DaF (−DaL

−1)F

∣∣∣∣∣

]

+
∑

a∈A
E

[∫

EA

(
F − F (XA¬a;x)

)2
dPa(x) |DaL

−1F |
]
.

The proof of this version follows exactly the lines of the proof of Theo-
rem 3.1 in [25, 34] but we can do slightly better by changing a detail in the
Taylor expansion.

Theorem 5.10. Let P denote the standard Gaussian distribution on R. For
any F : EA → R such that E [F ] = 0 and F ∈ DomD. Then,

κH(P,PF ) ≤ sup
ψ∈Lip2

E

[
ψ(F )−

∑

a∈A
ψ(F (X ′¬a))DaF (−DaL

−1)F

]

+
∑

a∈A
E

[∫

EA

(
F − F (XA¬a;x)

)2
dPa(x) |DaL

−1F |
]
, (22)

where X ′¬a = XA¬a ∪ {X ′a}.

This formulation may seem cumbersome, but it easily gives a close to
the usual bound in the Lyapounov central limit theorem, with a non optimal
constant (see [18]).

Corollary 5.11. Let (Xn, n ≥ 1) be a sequence of thrice integrable, inde-
pendent random variables. Denote

σ2
n = var(Xn), s2

n =
n∑

j=1

σ2
j and Yn =

1

sn

n∑

j=1

(Xj −E [Xj ]) .

Then,

κH(P,PYn) ≤ 2(
√

2 + 1)

s3
n

n∑

j=1

E
[
|Xj −E [Xj ] |3

]
.

Remark 5. If we use Theorem 5.9, we get

κH(P,PYn) ≤ E



∣∣∣∣∣∣
1−

n∑

j=1

X2
j

s2
n

∣∣∣∣∣∣


+

2

s3
n

n∑

j=1

E
[
|Xj −E [Xj ] |3

]

and the quadratic term is easily bounded only if the Xi’s are such that E
[
X4
i

]

is finite, which in view of Corollary 5.11 is a too stringent condition.
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The functional which appears in the central limit theorem is the basic
example of U-statistics or homogeneous sums. If we want to go further
and address the problem of convergence of more general U-statistics (or
homogeneous sums), we need to develop a similar apparatus for the Gamma
distribution. Recall that the Gamma distribution of parameters r and λ has
density

fr,λ(x) =
λr

Γ(r)
xr−1e−λx 1R+(x).

Let Yr,λ ∼ Γ(r, λ), it has mean r/λ and variance r/λ2. Denote by Y r,λ =
Yr,λ − r/λ. As described in [21], Z ∼ Y r,λ = Yr,λ − r/λ if and only if
E [Lr,λf(Z)] = 0 for any f once differentiable, where

Lr,λf(y) =
1

λ

(
y +

r

λ

)
f ′(y)− yf(y).

The Stein equation

Lr,λf(y) = g(y)−E
[
g(Y r,λ)

]
(23)

has a solution fg which satisfies

‖fg‖∞ ≤ ‖g′‖∞, ‖f ′g‖∞ ≤ 2λmax

(
1,

1

r

)
‖g′‖∞

and ‖f ′′g ‖∞ ≤ 2λ

(
max

(
λ,
λ

r

)
‖g′‖∞ + ‖g′′‖∞

)
, (24)

noting that fg is solution of (23) if and only if hg : x 7→ 1

λ
f
(
x− r

λ

)
solves

xh′(x) + (r − λx)h(x) = g(x)−E [g(Yr,λ)] ,

studied in [2, 17].

Theorem 5.12. Let F is the set of twice differentiable functions with first
and second derivative bounded by 1. There exists c > 0 such that for any
F ∈ DomD with E [F ] = 0,

κH(PF , PY r,λ
) ≤ cE

[∣∣∣∣∣
1

λ
F +

r

λ2
−
∑

a∈A
DaF (−DaL

−1)F

∣∣∣∣∣

]

+ c
∑

a∈A
E

[∫

EA

(
F (XA)− F (XA¬a;x)

)2
dPa(x) |DaL

−1F |
]
. (25)

This theorem reads exactly as [17, Theorem 1.5] for Poisson functionals
and is proved in a similar fashion.
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Remark 6. The generalization of this result to multivariate Gamma dis-
tribution will be considered in a forthcoming paper. The difficulty lies in
the regularity estimates of the solution of the Stein equation associated to
multivariate Gamma distribution, which require lengthy calculations.

An homogeneous sum of order d is a functional of independent identically
distributed random variables (X1, · · · , XNn), of the form

Fn(X1, · · · , XNn) =
∑

1≤i1,··· ,id≤Nn
fn(i1, · · · , id)Xi1 . . . Xid

where (Nn, n ≥ 1) is a sequence of integers which tends to infinity as n
does and the functions fn are symmetric on {1, · · · , Nn}d and vanish on the
diagonal. The asymptotics of these sums have been widely investigated and
depend on the properties of the function fn. For d = 2, see for instance
[20]. In [29], the case of any value of d is investigated through the prism
of universality: roughly speaking (see Theorem 4.1), if Fn(G1, · · · , GNn)
converges in distribution when G1, · · · , GNn are standard Gaussian random
variables then Fn(X1, · · · , XNn) converges to the same limit whenever the
Xi’s are centered with unit variance and finite third order moment and such
that

max
i

∑

1≤i2,··· ,id≤Nn
f2
n(i, i2, · · · , id) n→∞−−−→ 0.

For Gaussian random variables, the functional Fn belongs to the d-th Wiener
chaos. Combining the algebraic rules of multiplication of iterated Gaus-
sian integrals and the Stein-Malliavin method, it is proved in [28] that
Fn(G1, · · · , GNn) converges in distribution to a chi-square distribution of
parameter ν if and only if

E
[
F 2
n

] n→∞−−−→ 2ν and E
[
F 4
n

]
− 12E

[
F 3
n

]
− 12ν2 + 48ν

n→∞−−−→ 0.

We obtain here a related result for d = 2 (for the sake of simplicity though the
method is applicable for any value of d) and a general distribution without
resorting to universality.

Let A = {1, · · · , n}. For f, g : A2 → R, symmetric functions vanishing
on the diagonal, define the two contractions by

(f ?1
1 g)(i, j) =

∑

k∈A
f(i, k)g(j, k),

(f ?1
2 g)(i) =

∑

j∈A
f(i, j)g(i, j).

Theorem 5.13. Let XA = {Xi, 1 ≤ i ≤ n} be a collection of centered inde-
pendent random variables with unit variance and finite moment of order 4.
Define

F (XA) =
∑

(i,j)∈A 6=
f(i, j)XiXj
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where (i, j) ∈ A 6= means that we enumerate all the couples (i, j) in A2 with
distinct components and f is a symmetric function which vanishes on the
diagonal. Let ν =

∑
(i,j) f

2(i, j). Then, there exists cν > 0 such that

κ2
H(PF , PȲν/2,1/2

) ≤ cνE
[
X4

1

]2

×


 ∑

(i,a)∈A2

f4(i, a) + ‖f ?1
2 f‖2L2(A) + ‖f − f ?1

1 f‖2L2(A2)


 . (26)

We now introduce Infa(f), called the influence of the variable a, by

Infa(f) =
∑

i∈A
f2(i, a).

Remark that
∑

i∈A
f4(i, a) ≤

∑

a∈A

∑

i

f2(i, a)
∑

j

f2(j, a)

=
∑

a∈A

∑

i

f2(i, a) Infa(f)

≤ ν max
a∈A

Infa(f).

The same kind of computations can be made for ‖f ?1
2 f‖2L2(A). As a conse-

quence, we get the following corollary.

Corollary 5.14. With the same notations as above,

κ2
H(PF , PȲν/2,1/2

) ≤ cνE
[
X4

1

]2
[
max
a∈A

Infa(f) + ‖f − f ?1
1 f‖2L2(A2)

]
.

The supremum of the influence is the quantity which governs the distance
between the distributions of Fn(G1, · · · , GNn) and Fn(X1, · · · , XNn) in [29],
thus it is not surprising that it still appears here.

Remark 7. A tedious computation shows that

E
[
F 4
]
− 12E

[
F 3
]
− 12ν2 + 48ν

=
∑

(i,j)∈A 6=
f4(i, j)E

[
X4
]2

+ 6
∑

(i,j,k)∈A 6=
f2(i, j)f2(i, k)E

[
X4
]

+ 12E
[
X3
]2




∑

(i,j,k)∈A 6=
f2(i, j) f(i, k) f(k, j)−

∑

(i,j)∈A 6=
f3(i, j)





− 48





∑

(i,j,k)∈A 6=
f(i, j)f(i, k)f(k, j)− f2(i, j)



− 12

∑

(i,j)∈A 6=
f4(i, j). (27)
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The Cauchy-Schwarz inequality entails that the properties

E
[
F 4
n

]
− 12E

[
F 3
n

]
− 12ν2 + 48ν

n→∞−−−→ 0

and
κH(PF , PȲν/2,1/2

)
n→∞−−−→ 0

share the same sufficient condition:
∑

(i,a)∈A 6=
f4(i, a) + ‖f ?1

2 f‖2L2(A) + ‖f − f ?1
1 f‖2L2(A2)

n→∞−−−→ 0.

However, we cannot go further and state a fourth moment theorem as we
know, that for Benoulli random variables, Fn may converge to Ȳν/2,1/2 while
the RHS of (26) does not converge to 0.

As another corollary of Theorem 5.13, we obtain the KR distance between
a degenerate U-statistics of order 2 and a Gamma distribution. Compared
to the more general [17, Theorem 1.1], the computations are here greatly
simplified by the absence of exchangeable pairs.

Theorem 5.15. Let A = {1, · · · , n} and (Xi, i ∈ A) a family of independent
and identically distributed real-valued random variables such that

E [X1] = 0, E
[
X2

1

]
= σ2 and E

[
X4

1

]
<∞.

Consider the random variable

F =
2

n− 1

∑

(i,j)∈A 6=
XiXj .

Then, there exists c > 0, independent of n, such that

κH(PF , PY 1/2,1/2σ2
) ≤ c σ

2

√
n
E
[
X4

1

]
. (28)

Proof. Take fn(i, j) = 2/(n− 1) and apply Theorem 5.13.

Remark 8. The proof of Theorem 5.13 is rich of insights. In Gaussian,
Poisson or Rademacher contexts, the computation of L−1F is easily done
when there exists a chaos decomposition since L operates as a dilation on
each chaos (see [25, 26, 34]). In [37, Lemma 3.4 and below], a formula
for L−1 of Poisson driven U-statistics is given, not resorting to the chaos
decomposition. It is based on the fact that L applied to a U-statistics F of
order k yields kF plus a U-statistics of order (k−1). Then, the construction
of an inverse formula can be made by induction. In our framework, the
action of L on a U-statistics yields kF plus a U-statistics of order k so that
no induction seems possible. However, for an order k U-statistics which is
degenerate of order (k− 1), we have LF = kF . For k = 2, this hypothesis of
degeneracy is exactly the sufficient condition to have a convergence towards
a Gamma distribution.
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6. Proofs

6.1. Proofs of Section 2
Proof of Theorem 2.4. The process trace(DU) = (DaUa, a ∈ B) belongs to
L2(A× EA): Using the Jensen inequality, we have

‖ trace(DU)‖2L2(A×EA) = E

[∑

a∈B
|DaUa|2

]
≤ 2

∑

a∈B
E
[
U2
a

]
<∞. (29)

Moreover,

〈DF,U〉L2(A×EA) = E

[∑

a∈A
(F −E [F | Ga]) Ua

]

= E

[∑

a∈B
(F −E [F | Ga]) Ua

]
= E

[
F
∑

a∈B
(Ua −E [Ua | Ga])

]
,

since the conditional expectation is a projection in L2(EA).

Proof of corollary 2.5. Let (Fn, n ≥ 1) be a sequence of random variables
defined on S such that Fn converges to 0 in L2(EA) and the sequence DFn
converges to η in L2(A×EA). Let U be a simple process. From the integra-
tion by parts formula (3)

E

[∑

a∈A
DaFn Ua

]
= E

[
Fn
∑

a∈A
DaUa

]

where
∑

a∈A
DaUa ∈ L2(EA) in view of (29). Then,

〈η, U〉L2(A×EA) = lim
n→∞

E

[
Fn
∑

a∈A
DaUa

]
= 0,

for any simple process U . It follows that η = 0 and then the operator D is
closable from L2(EA) to L2(A× EA).

Proof of Lemma 2.6. Since supn ‖DFn‖D is finite, there exists a subsequence
which we still denote by (DFn, n ≥ 1) weakly convergent in L2(A× EA) to
some limit denoted by η. For k > 0, let nk be such that ‖Fm − F‖L2 <
1/k for m ≥ nk. The Mazur’s Theorem implies that there exists a convex
combination of elements of (DFm,m ≥ nk) such that

∥∥∥
Mk∑

i=1

αkiDFmi − η
∥∥∥
L2(A×EA)

< 1/k.
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Moreover, since the αki are positive and sums to 1,

∥∥∥
Mk∑

i=1

αki Fmi − F
∥∥∥
L2(EA)

≤ 1/k.

We have thus constructed a sequence

F k =

Mk∑

i=1

αki Fmi

such that F k tends to F in L2 and DF k converges in L2(A × EA) to a
limit. By the construction of D, this means that F belongs to D and that
DF = η.

Proof of Theorem 2.11. To prove the existence of (Pt, t ≥ 0) for a countable
set, we apply the Hille-Yosida theorem:

Proposition 6.1 (Hille-Yosida). A linear operator L on L2(EA) is the gen-
erator of a strongly continuous contraction semigroup on L2(EA) if and only
if

1. DomL is dense in L2(EA).
2. L is dissipative i.e. for any λ > 0, F ∈ DomL,

‖λF − LF‖L2(EA) ≥ λ‖F‖L2(EA).

3. Im(λ Id−L) dense in L2(EA).

We know that S ⊂ DomL and that S is dense in L2(EA), then so does
DomL.

Let (An, n ≥ 1) an increasing sequence of subsets ofA such that ∪n≥1An =
A. For F ∈ L2(EA), let Fn = E [F | FAn ]. Since (Fn, n ≥ 1) is a square inte-
grable martingale, Fn converges to F both almost-surely and in L2(EA). For
any n ≥ 1, Fn depends only onXAn . Abusing the notation, we still denote by
Fn its restriction to EAn so that we can consider LnFn where Ln is defined as
above on EAn . Moreover, according to Lemma 3.2, DaFn = E [DaF | FAn ],
hence

λ2‖Fn‖2L2(EA) ≤ ‖λFn − LnFn‖2L2(EAn ) = E



(
λFn +

∑

a∈A
DaFn

)2



= E


E

[
λF +

∑

a∈A
DaF

∣∣∣FAn

]2

 n→∞−−−→ ‖λF − LF‖2L2(EA).

Therefore, point (2) is satisfied.
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Since An is finite, there exists Gn ∈ L2(EAn) such that

Fn = (λ Id−Ln)Gn(XAn) = λGn(XAn) +
∑

a∈An
DaGn(XAn)

= λG̃n(XA) +
∑

a∈An
DaG̃n(XA) = λG̃n(XA) +

∑

a∈A
DaG̃n(XA),

where G̃n(XA) = Gn(XAn) depends only on the components whose index
belongs to An. This means that Fn belongs to the range of λ Id−L and we
already know it converges in L2(EA) to F .

Proof of Theorem 2.13. For A finite, denote by Za the Poisson process of
intensity 1 which represents the time at which the a-th component is modified
in the dynamics of X. Let τa = inf{t ≥ 0, Za(t) 6= Za(0)} and remark that
τa is exponentially distributed with parameter 1, hence

E [F (X(t))1t≥τa |X(0) = x]

= (1− e−t)E
[∫

Ea

F (X¬a(t), x′a) dPa(x
′
a)
∣∣∣X(0) = x

]

= (1− e−t)E [E [F (X(t)) | Ga] |X(0) = x]

= E [E [F (X(t)) | Ga]1t≥τa |X(0) = x] .

Then,

DaPtF (x) = PtF (x)−E [PtF (x) | Ga]
= E [(F (X(t))−E [F (X(t)) | Ga])1t<τa |X(0) = x]

+ E [(F (X(t))−E [F (X(t)) | Ga])1t≥τa |X(0) = x]

= e−tPtDaF (x).

For A infinite, let (An, n ≥ 1) an increasing sequence of finite subsets of A
such that ∪n≥1An = A. For F ∈ L2(EA), let Fn = E [F | FAn ]. Since P is a
contraction semi-group, for any t, PtFn tends to PtF in L2(EA) as n goes to
infinity. From the Mehler formula, we known that PtFn = Pnt Fn where Pn

is the semi-group associated to An, hence

DaPtFn = DaP
n
t Fn = e−tPnt DaFn. (30)
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Moreover,

E

[∑

a∈An
|DaPtFn|2

]
= e−2t

∑

a∈An
E
[
|PtDaFn|2

]

≤ e−2t
∑

a∈An
E
[
|DaFn|2

]

= e−2t
∑

a∈An
E
[
|E [DaF | FAn ] |2

]

≤ e−2t
∑

a∈An
E
[
|DaF |2

]

≤ e−2t‖DF‖2D.

According to Lemma [2.6], this means that PtF belongs to D. Let n go to
infinity in (30) yields (6).

Proof of Lemma 2.9. For U and V in S0(l2(A)), from the integration by
parts formula,

E [δU δV ] = 〈Dδ(U), V 〉L2(A×EA)

= E

[∑

a∈A
Da(δU)Va

]

= E


 ∑

(a,b)∈A2

VaDaDbUb




= E


 ∑

(a,b)∈A2

VaDbDaUb




= E


 ∑

(a,b)∈A2

DbVaDaUb


 = E [trace(DU ◦DV )] .

It follows that E
[
δU2

]
≤ ‖U‖2D(l2(A)). Then, by density, D(l2(A)) ⊂ Dom δ

and Eqn. (4) holds for U and V in Dom δ.

6.2. Proofs of Section 3
Proof of Lemma 3.1. Let k ∈ A. Assume that F ∈ Fk. Then, for every
n > k, F is Gn-measurable and DnF = 0.
Let F ∈ D such that DnF = 0 for every n > k. Then F is Gn-measurable
for any n > k. From the equality Fk = ∩

n>k
Gn, it follows that F is Fk-

measurable.
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Proof of Lemma 7. For any k ≥ 1, Fk ∩ Gk = Fk−1, hence

DkE [F | Fk] = E [F |Fk]−E [F | Fk−1] = E [DkF | Fk] .

The proof is thus complete.

Proof of Theorem 3.3. Let F an Fn-measurable random variable. It is clear
that

F −E [F ] =

n∑

k=1

(E [F | Fk]−E [F | Fk−1]) =

n∑

k=1

DkE [F | Fk] .

For F ∈ D, apply this identity to Fn = E [F | Fn] to obtain

Fn −E [F ] =
n∑

k=1

DkE [F | Fk] .

Remark that for l > k, in view of Lemma 3.1,

E [Dk E [F | Fk]DlE [F | Fl]] = E [DlDk E [F | Fk]E [F | Fl]] = 0, (31)

since Dk E [F | Fk] is Fk-measurable. Hence, we get

E
[
|F −E [F ] |2

]
≥ E

[
|Fn −E [F ] |2

]
=

n∑

k=1

E
[
DkE [F | Fk]2

]
.

Thus, the sequence (DkE [F | Fk] , k ≥ 1) belongs to l2(N) and the result
follows by a limiting procedure.

We now analyze the non-ordered situation. If A is finite, each bijection
between A and {1, · · · , n} defines an order on A. Hence, there are |A| !
possible filtrations. Each term of the form

DikE [F |Xi1 , · · · , Xik ]

appears (k−1)! (|A|−k)! times since the order of Xi1 , · · · , Xik−1
is irrelevant

to the conditioning. The result follows by summation then renormalization
of the identities obtained for each filtration.

Proof of Theorem 3.4. Remark that

Dk E
[
F |HNk−1

]
= E

[
F |HNk−1

]
−E

[
F |HNk−1 ∩ Gk

]

= E
[
F |HNk−1

]
−E

[
F |HNk

]
.

For F ∈ FN , since the successive terms collapse, we get

F −E [F ] = E
[
F |HN0

]
−E

[
F |HNN

]

=
N∑

k=1

Dk E
[
F |HNk−1

]
=
∞∑

k=1

Dk E
[
F |HNk−1

]
,
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by the very definition of the gradient map. As in (31), we can show that for
any N ,

E
[
Dk E

[
F |HNk−1

]
DlE

[
F |HNl−1

]]
= 0, for k 6= l.

Consider FN = E [F | FN ] and proceed as in the proof of Lemma 3.3 to
conclude.

Proof of Corollary 3.5. According to (31) and (7), we have

var(F ) = E



∣∣∣∣∣
∑

k∈A
Dk E [F |Fk]

∣∣∣∣∣

2



= E

[∑

k∈A

∣∣∣Dk E [F |Fk]
∣∣∣
2
]

= E

[∑

k∈A

∣∣∣E [Dk F |Fk]
∣∣∣
2
]

≤ E

[∑

k∈A
E
[
|DkF |2|Fk

]
]

= E

[∑

k∈A
|DkF |2

]
,

where the inequality follows from then Jensen inequality.

Proof of Theorem 3.6. Let F,G ∈ D, the Clark formula entails

cov(F,G) = E [(F −E [F ])(G−E [G])]

= E


∑

k,l∈A
DkE [F | Fk] DlE [G | Fl]




= E

[∑

k∈A
DkE [F | Fk] DkE [G | Fk]

]

= E

[∑

k∈A
DkF DkE [G | Fk]

]

where we have used (31) in the third equality and the identity DkDk = Dk

in the last one.
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Proof of Theorem 3.7. Let F,G ∈ L2(EA).

cov(F,G) = E

[∑

k∈A
DkE [F |Fk]DkE [G|Fk]

]

= E

[∑

k∈A
DkE [F |Fk]

(
−
∫ ∞

0
LPtE [G|Fk] dt

)]

=

∫ ∞

0
E

[∑

k∈A
DkE [F |Fk]

(∑

l∈A
DlPtE [G|Fk] dt

)]

=

∫ ∞

0
e−tE

[∑

k∈A
DkF PtDkE [G|Fk]

]
dt

when we have used the orthogonality of the sum, (6) and the Fk-measurability
of PtDkE [G|Fk] to get the last equality.

Proof of Theorem 3.8. Assume with no loss of generality that F is centered.
Apply (8) to θF and eθF ,

θ
∣∣∣E
[
FeθF

]∣∣∣ = θ

∣∣∣∣∣E
[∑

k∈A
DkF DkE

[
eθF | Fk

]]∣∣∣∣∣

≤ θ
∑

k∈A
E
[
|DkF |

∣∣∣DkE
[
eθF | Fk

]∣∣∣
]
.

Recall that

DkE
[
eθF | Fk

]
= E′

[
E
[
eθF | Fk

]
−E

[
eθF (X¬k,X′k) | Fk

]]

= E
[
E′
[
eθF − eθF (X¬k,X′k)

] ∣∣∣Fk
]

= E
[
eθF E′

[
1− e−θ∆kF

] ∣∣∣Fk
]

where ∆kF = F − F (X¬k, X ′k) so that DkF = E′ [∆kF ].
Since (x 7→ 1− e−x) is concave, we get

DkE
[
eθF | Fk

]
≤ E

[
eθF (1− e−θDkF ) | Fk

]
≤ θ E

[
eθF |DkF | | Fk

]
.

Thus,

∣∣∣E
[
FeθF

]∣∣∣ ≤ θ E

[
eθF

∞∑

k=1

|DkF |E [|DkF | | Fk]
]
≤M θ E

[
eθF
]
.

By Gronwall lemma, this implies that

E
[
eθF
]
≤ exp

(
θ2

2
M

)
·
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Hence,

P(F −E [F ] ≥ x) = P(eθ(F−E[F ])) ≥ eθx) ≤ exp(−θx+
θ2

2
M).

Optimize with respect to θ gives θopt = x/M , hence the result.

Proof of Theorem 3.9. We follow closely the proof of [43] for Poisson process.
Let G ∈ L2(EA) be a positive random variable such that DG ∈ L2(A×EA).
For any non-zero integer n, define Gn = min(max( 1

n , G), n), for any k, Lk =
E [Gn|Fk] and L0 = E [Gn]. We have,

Ln logLn − L0 logL0 =
n−1∑

k=0

Lk+1 logLk+1 − Lk logLk

=

n−1∑

k=0

logLk(Lk+1 − Lk) +

n−1∑

k=0

Lk+1(logLk+1 − logLk).

Note that (logLk(Lk+1 − Lk), k ≥ 0) and (Lk+1 − Lk, k ≥ 0) are martin-
gales, hence

E [Ln logLn − L0 logL0]

= E

[
n−1∑

k=0

Lk+1 logLk+1 − Lk+1 logLk − Lk+1 + Lk

]

= E

[
n−1∑

k=0

Lk+1 logLk+1 − Lk logLk − (logLk + 1)(Lk+1 − Lk)
]

= E

[
n−1∑

k=0

`(Lk, Lk+1 − Lk)
]
,

where the function ` is defined on Θ = {(x, y) ∈ R2 : x > 0, x+ y > 0} by

`(x, y) = (x+ y) log(x+ y)− x log x− (log x+ 1)y.

Since ` is convex on Θ, it comes from the Jensen inequality for conditional
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expectations that

n−1∑

k=0

E [`(Lk, Lk+1 − Lk)] =
n−1∑

k=0

E [`(E [Gn | Fk] , Dk+1E [Gn | Fk+1])]

=

n∑

k=1

E [`(E [Gn | Fk−1] ,E [DkGn | Fk])]

≤
n∑

k=1

E [E [`(E [Gn | Gk] , DkGn) | Fk]]

=

n∑

k=1

E [`(E [Gn | Gk] , DkGn)]

=

∞∑

k=1

E [`(E [Gn | Gk] , DkGn)] .

We know from [43] that for any non-zero integer k, `(E [Gn | Gk] , DkGn)
converges increasingly to `(E [G | Gk] , DkG) P-a.s., hence by Fatou Lemma,

E [G logG]−E [G] logE [G] ≤
∞∑

k=1

E [`(E [G | Gk] , DkG)] .

Furthermore, for any (x, y) ∈ Θ, `(x, y) ≤ |y|2/x, then,

E [G logG]−E [G] logE [G] ≤
∞∑

k=1

E

[ |DkG|2
E [G | Gk]

]
·

The proof is thus complete.

Proof of Theorem 3.10. We first prove the uniqueness. Let (ϕ, V ) and (ϕ′, V ′)
two convenient couples. We have Da(ϕ − ϕ′) = V ′a − Va for any a ∈ A and∑

a∈ADa(V
′
a − Va) = 0, hence

0 = E

[
(ϕ− ϕ′)

∑

a∈A
Da(V

′
a − Va)

]
= E

[∑

a∈A
Da(ϕ− ϕ′)(V ′a − Va)

]

= E

[∑

a∈A
(V ′a − Va)2

]
.

This implies that V = V ′ and D(ϕ − ϕ′) = 0. The Clark formula (Theo-
rem 3.3) entails that 0 = E [ϕ− ϕ′] = ϕ− ϕ′.

We now prove the existence. Since E [Daϕ | Ga] = 0, we can choose

Va = E [Ua | Ga] ,
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which implies Daϕ = DaUa, and guarantees δV = 0. Choose any ordering
of the elements of A and remark that, in view of (31),

E



( ∞∑

k=1

E [DkUk | Fk]
)2

 = E



( ∞∑

k=1

DkE [Uk | Fk]
)2



= E

[ ∞∑

k=1

(
DkE [Uk | Fk]

)2
]
≤
∞∑

k=1

E
[
|DkUk|2

]
≤ ‖U‖2D(l2(A)),

hence

ϕ =

∞∑

k=1

E [DkUk | Fk] ,

defines a square integrable random variable of null expectation, which satis-
fies the required property.

6.3. Proofs of Section 4
Proof of Theorem 4.5. Starting from (15), the terms with τ = 0 can be
decomposed as

e−2pNm

N∑

m=1

E

[(
F (ωN(m) + εζNm )− F (ωN(m))

)2
]
µNm(1) +RN0 .

Since F belongs to TV − Lip,

RN0 ≤
N∑

m=1

∞∑

`=2

l2µNm(l) ≤ c1N(pN )2E
[
(Poisson(pN ) + 2)2

]
≤ c2N(pN )2,

where the c1 and c2 are irrelevant constants. As NpN is bounded, RN0 goes
to 0 as N grows to infinity. For the very same reasons, the sum of the terms
of (15) with τ ≥ 1 converge to 0, thus

lim
N→∞

EUN (F ) = lim
N→∞

N∑

m=1

e−2pNm E

[(
F (ωN(m) + εζNm )− F (ωN(m))

)2
]
pNm.

Consider now the space Nζ
Y = NY × {ζNk , k = 1, · · · , N} with the product

topology and probability measure P̃N = PN ⊗
∑

k p
N
k εζNk

. Let

ψ : NY × {ζNk , k = 1, · · · , N} −→ E

(ω, ζ) 7−→
(
F (ω − (ω(ζ)− 1)εζ)− F (ω − ω(ζ)εζ)

)2
.

Then, we can write

N∑

m=1

E

[(
F (ωN(m) + εζNm )− F (ωN(m))

)2
]
pNm =

∫

NζY

ψ(ω, ζ) dP̃N (ω, ζ).
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Under P̃N , the random variables ω and ζ are independent. Equation (14)
means that the marginal distribution of ζ tends to M (assumed to be a
probability measure at the very beginning of this construction). Moreover,
we already know that PN converges in distribution to P. Hence, P̃N tends
to P⊗M as N goes to infinity. Since F is in TV − Lip, ψ is continuous and
bounded, hence the result.

Proof of Theorem 4.9. For F ∈ DB ∩H-C1, in view of (17), we have

F (ωN )− F (ωN(k) +M ′k h
N
k )

= (Mk −M ′k) 〈∇F (ωN(k)), h
N
k 〉H +

Mk −M ′k√
N

ε(ωN(k), h
N
k ).

Hence,

N∑

k=1

E

[(
F (ωN )−E′

[
F (ωN(k) +M ′k h

N
k )
])2
]

=
N∑

k=1

E

[(
Mk 〈∇F (ωN(k)), h

N
k 〉H + E′

[
Mk −M ′k√

N
ε(ωN(k), h

N
k )

])2
]

=

N∑

k=1

E
[
〈∇F (ωN(k)), h

N
k 〉2H

]
+ Rem,

and

Rem ≤ c

N

N∑

k=1

E
[
ε(ωN(k), h

N
k )2
]
N→∞−−−−→ 0,

by the Césaro theorem. It follows that EUN (F ) has the same limit as
N∑

k=1

E
[
〈∇F (ωN(k)), h

N
k 〉2H

]
.

As N goes to infinity, we add more and more terms to the random walk, so
that the influence of one particular term becomes negligible. The following
result is well known [8, Proposition 3]: For any k ∈ {1, . . . , N}, for any
bounded ψ and ϕ,

E
[
ψ(Mk)ϕ(ωN )

] N→∞−−−−→ E [ψ(Mk)]E [ϕ(ω)] .

Since ‖∇F‖H belongs to L∞ and ‖hNk ‖∞ tends to 0, this entails that for any
k,

lim
N→∞

E
[
〈∇F (ωN(k)), h

N
k 〉2H

]
= lim

N→∞
E
[
〈∇F (ωN ), hNk 〉2H

]

= lim
N→∞

E
[
‖πVN∇F (ωN )‖2H

]
,

where πVN is the orthogonal projection in H onto span{hNk , k = 1, · · · , N}.
We conclude by dominated convergence.
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6.4. Proofs of Section 5
Proof of Theorem 5.2. Take care that in the argument of h, all the sets are
considered as ordered: When we write B ∪ C, we implicitly reorder its ele-
ments, for instance

h(X{1,3}∪{2}) = h(X1, X2, X3).

Apply the Clark formula,

Un − θ =

(
n

m

)−1 ∑

A∈([n],m)

∑

B⊂A

(
m

|B|

)−1 1

|B|
∑

b∈B
DbE [h(XA) |XB]

=

(
n

m

)−1 ∑

B⊂[n]

(
m

|B|

)−1 1

|B|
∑

b∈B

∑

A⊃B
A∈([n],m)

DbE [h(XA) |XB]

=

(
n

m

)−1 ∑

B⊂[n]

(
m

|B|

)−1 1

|B|
∑

b∈B

∑

C∈([n]\B,m−|B|)
DbE [h(XB∪C) |XB] .

It remains to prove that

m∑

k=1

(
m

k

)
H(k)
n

=

(
n

m

)−1 ∑

B⊂[n],|B|≤m

(
m

|B|

)−1 1

|B|
∑

b∈B

∑

C∈([n]\B,m−|B|)
DbE [h(XB∪C) |XB] .

(32)

for any integer n. For n = 1, it is straightforward that

g1(X1) = h(X1)− θ = D1E [h(X1)|X1] .

Assume the existence of an integer n such that (32) holds for any set of
cardinality n. In particular, for any l ∈ [n+ 1]

m∑

k=1

(
m

k

)
H

(k)
Al

=

(
n

m

)−1 ∑

B⊂[Al],|B|≤m

(
m

|B|

)−1 1

|B|
∑

b∈B

∑

C∈([Al]\B,m−|B|)
DbE [h(XB∪C) |XB] ,
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where Al = [n+ 1]\{l}. Let m such that m ≤ n. Then,
m∑

k=1

(
m

k

)
H

(k)
n+1

=

m∑

k=1

(
m

k

)(
n+ 1

k

)−1 1

n+ 1− k
n+1∑

l=1

∑

B∈([Al],k)

gk(XB)

=
1

n+ 1

n+1∑

l=1

m∑

k=1

(
m

k

)(
n

k

)−1 ∑

B∈([Al],k)

gk(XB)

=
1

n+ 1

n+1∑

l=1

(
n

m

)−1

×
∑

B⊂[Al],|Al|≤m

(
m

|B|

)−1 1

|B|
∑

b∈B

∑

C∈([Al]\B,m−|B|)
DbE [h(XB∪C) |XB]

=
n+ 1−m
n+ 1

(
n

m

)−1

×
∑

B⊂[n+1],|B|≤m

(
m

|B|

)−1 1

|B|
∑

b∈B

∑

C∈([n+1]\B,m−|B|)
DbE [h(XB∪C) |XB]

=

(
n+ 1

m

)−1

×
∑

B⊂[n+1],|B|≤m

(
m

|B|

)−1 1

|B|
∑

b∈B

∑

C∈([n+1]\B,m−|B|)
DbE [h(XB∪C) |XB] ,

where we have used in the first line that each subset B of [n+1] of cardinality
k appears in n+1−k different subsets Al (for l ∈ [n+1]\B), and in the same
way, in the penultimate line, that each subset B ∪ C of [n+ 1] of cardinality
m appears in n+1−m different subsets Al (for l ∈ [n+1]\B∪C). Eventually,
the case m = n+ 1 follows from
n+1∑

k=1

∑

B∈([n+1],k)

gk(XB) = h(X[n+1])− θ

=
∑

B⊂[n+1]

(
n+ 1

|B|

)−1 1

|B|
∑

b∈B
DbE

[
h(X[n+1]) |XB

]
,

by applying the Clark formula to h.

Proof of Theorem 5.6. By the previous construction, for

i = (i1, · · · , iN ) ∈ (Ik = k) ∩
N⋂

m=k+1

(Im 6= k),
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the permutation σ = Γ(i) admits k as a fixed point. Hence,
{

(Ik = k) ∩
N⋂

m=k+1

(Im 6= k)

}
⊂ (ŨNk = 1).

As both events have cardinality (N − 1)!, they do coincide. The values of
pk and αk are easily computed since the random variables (Im, k ≤ m ≤ N)
are independent. According to Theorem 3.4,

ŨNk = E
[
ŨNk

]
+

N∑

l=1

DlE
[
Ũk |Hl−1

]

= E
[
ŨNk

]
+

N∑

l=1

E
[
ŨNk |Hl−1

]
−E

[
ŨNk |Hl

]
.

Since ŨNk ∈ Hk−1, DlE
[
Ũk |Hl−1

]
= 0 for l < k. For l = k, we get

E

[
1(Ik=k)

N∏

m=k+1

1(Im 6=k) | Ik, Ik+1, · · ·
]

−E

[
1(Ik=k)

N∏

m=k+1

1(Im 6=k) | Ik+1, Ik+2, · · ·
]

=
(
1(Ik=k) −Pk({k})

) N∏

m=k+1

1(Im 6=k).

For l = k + 1,

E

[
1(Ik=k)

N∏

m=k+1

1(Im 6=k) | Ik+1, Ik+2, · · ·
]

−E

[
1(Ik=k)

N∏

m=k+1

1(Im 6=k) | Ik+2, Ik+3, · · ·
]

= tpk

(
1(Ik+1 6=k) −Pk+1({k}c)

) N∏

m=k+2

1(Im 6=k)

= −tpk
(
1(Ik+1=k) −Pk+1({k})

) N∏

m=k+2

1(Im 6=k).

The subsequent terms are handled similarly and the result follows.

Proof of Theorem 5.7. By the very definition of C̃1, we have

C̃1 = E
[
C̃1

]
+

N∑

k=1

N∑

l=k

DlE
[
ŨNk |Hl−1

]
. (33)
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For k = l, E
[
ŨNk |Hl−1

]
= ŨNk and for l > k,

E
[
ŨNk |Hl−1

]
=

t

t+ k − 1

(
1− 1

t+ k

)
. . .

(
1− 1

t+ l − 2

) N∏

m=l

1(Im 6=k)

=
t

t+ l − 2

N∏

m=l

1(Im 6=k).

It is straightforward that l > k,

Dl

(
N∏

m=l

1(Im 6=k)

)
=

(
1(Il 6=k) − (1− 1

t+ l − 1
)

) N∏

m=l+1

1(Im 6=k)

= −
(
1(Il=k) −

1

t+ l − 1

) N∏

m=l+1

1(Im 6=k).

The result then follows by direct computations.

Proof of Theorem 5.8. Recall that for j 6= l,DlE
[
ŨNk |Hl−1

]
andDjE

[
ŨNm |Hj−1

]

are orthogonal in L2. In view of (33), according to the integration by parts
formula, we have

var [C̃1] =
N∑

k=1

N∑

m=1

N∑

l=k

N∑

j=m

E
[
DlE

[
ŨNk |Hl−1

]
DjE

[
ŨNm |Hj−1

]]

=

N∑

k=1

N∑

m=1

N∑

l=k∨m
E
[
DlE

[
ŨNk |Hl−1

]
DlE

[
ŨNm |Hl−1

]]

= 2
N∑

k=1

N∑

m=k+1

N∑

l=m

E
[
UNk DlE

[
ŨNm |Hl−1

]]

+ E

[
N∑

k=1

N∑

l=k

ŨNk DlE
[
ŨNk |Hl−1

]]
.

Then, for l ≥ m > k,

E
[
UNk DlE

[
ŨNm |Hl−1

]]

= − t

t+ l − 2
E


1(Ik=k)

N∏

p=k+1

1(Ip 6=k)

(
1(Il=m) −

1

t+ l − 1

) N∏

j=l+1

1(Ij 6=m)




= − tPk({k})
t+ l − 2

(
Pl({m})−

1

t+ l − 1

)
E




l−1∏

p=k+1

1(Ip 6=k)


E




N∏

p=l+1

1(Ip /∈{k,m})




= 0,
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since, for any l ≥ m > k

E
[
1(Il=m)1(Il 6=k)

]
= E

[
1(Il=m)

]
= Pl({m}) =

1

t+ l − 1
.

Furthermore, for l > k,

E
[
ŨNk DlE

[
ŨNk |Hl−1

]]

= − t

t+ l − 2
E


1(Ik=k)

N∏

p=k+1

1(Ip 6=k)

(
1(Il=k) −

1

t+ l − 1

) N∏

p=l+1

1(Ip 6=k)




=
t

(t+ l − 1)(t+ l − 2)
Pk({k})E




N∏

p=k+1

1(Ip 6=k)




=
t2

(t+ l − 1)(t+ l − 2)(t+N − 1)
,

as
∏N
p=k+1 1(Ip 6=k)1(Il=k) = 0, for l > k. Finally, for l = k, we get

E
[
ŨNk DlE

[
ŨNk |Hl−1

]]

= E


1(Ik=k)

N∏

p=k+1

1(Ip 6=k)

(
1(Ik=k) −

t

t+ k − 1

) N∏

p=k+1

1(Ip 6=k)




=

(
t

t+ k − 1
− t2

(t+ k − 1)2

)
t+ k − 1

t+N − 1

=
t(k − 1)

(t+ k − 1)(t+N − 1)
·

It follows that

var [C̃1]

=
t2

t+N − 1

N∑

k=1

N∑

l=k+1

1

(t+ l − 1)(t+ l − 2)
+

t

t+N − 1

N∑

k=1

k − 1

t+ k − 1

=
t

t+N − 1

(
Nt

t+N − 1
+N − 2t

N∑

k=1

1

t+ k − 1

)
.

The proof is thus complete.

Proof of Theorem 5.10. We have to compute

sup
ϕ∈F

E
[
ϕ′(F )− Fϕ(F )

]
,
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where F is the set of twice differentiable functions with second order deriva-
tive bounded by 2. Since F is centered

E [Fϕ(F )] = E
[
LL−1F ϕ(F )

]
=
∑

a∈A
E
[
(−DaL

−1)F Daϕ(F )
]
.

The trick is to use the Taylor expansion taking the reference point to be X ′¬a
instead of XA. This yields

Daϕ(F ) = E′
[
ϕ(F (XA))− ϕ(F (X ′¬a, X

′
a))
]

= ϕ′(F (X ′¬a))DaF +R,

where

R =
1

2

∫ 1

0
E′
[
ϕ′′
(
θF (X ′¬a) + (1− θ)F (XA)

)(
F (XA)− F (X ′¬a)

)2
]

dθ.

Hence

E
[
ϕ′(F )− Fϕ(F )

]

= E

[
ϕ′(F )−

∑

a∈A
ϕ′(F (X ′¬a)) DaF (−DaL

−1)F

]

+
∑

a∈A
E
[
R (−DaL

−1)F
]
.

The rightmost term of the the latter equation easily yields the rightmost
of (22). Since ‖ϕ′′‖∞ < 2, it is clear that ϕ′ belongs to Lip2 hence the
formulation of the distance with a supremum.

Proof of Corollary 5.11. Without loss of generality, we can assume that Xi

is centered for any i ≥ 1. Remark that

DjXk =

{
0 if j 6= k,

Xk if j = k.

Hence LYn = Yn and Yn = L−1Yn. According to Theorem 5.10,

κH(P,PYn) ≤ sup
ψ∈Lip2

E

[
ψ(F )− 1

s2
n

∑

i∈A
ψ
(
F
(
Yn −

Xi −X ′i
sn

))
X2
i

]

+
1

s3
n

n∑

j=1

E

[∫

EA

(
Xi − x

)2
dPi(x) |Xi|

]
.
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By independence, since ψ is 2-Lipschitz continuous,
∣∣∣∣∣E
[
ψ(F )− 1

s2
n

∑

i∈A
ψ
(
F (Yn −

Xi −X ′i
sn

)
)
X2
i

]∣∣∣∣∣

=

∣∣∣∣∣
1

s2
n

∑

i∈A
σ2
i E

[
ψ(F )− ψ

(
F (Yn −

Xi −X ′i
sn

)
)]∣∣∣∣∣

≤ 2

s3
n

∑

i∈A
σ2
i E
[
|Xi −X ′i|

]
≤ 2
√

2

s3
n

∑

i∈A
σ3
i .

Moreover,

E

[∫

EA

(
Xi − x

)2
dPi(x) |Xi|

]
= E

[
|Xi|3

]
+ σ2E [|Xi|]

≤ E
[
|Xi|3

]
+ σ3 ≤ 2E

[
|Xi|3

]

according to the Hölder inequality. Hence the result.

Proof of Theorem 5.12. According to the principle of the Stein method, we
have to estimate

E

[
1

λ

(
ϕ(F ) +

r

λ

)
− Fϕ′(F )

]
, (34)

where ϕ and its derivatives satisfy (24). For any a ∈ A, thanks to the Taylor
expansion,

−Daϕ(F ) = E′
[
ϕ(F (X¬a, X ′a))− ϕ(F (X))

]
= −ϕ′(F )DaF +R, (35)

where

R =
1

2

∫ 1

0
(1− θ)

×E′
[
ϕ′′
(

(1− θ)F (X) + θF (X¬a, X ′a)
)(
F (X)− F (X¬a, X ′a)

)2
]

dθ (36)

According to (3) and to the definition of L,

E [Fϕ(F )] = E
[
LL−1F ϕ(F )

]
= E

[
−δ(DL−1F )ϕ(F )

]

= E
[
〈Dϕ(F ),−DL−1F 〉L2(A)

]
. (37)

Plug (35) into (37):

E
[
〈Dϕ(F ),−DL−1F 〉L2(A)

]

= −
∑

a∈A
E
[
Daϕ(F )Da(L

−1F )
]

= −
∑

a∈A
E
[
ϕ′(F )DaFDa(L

−1F )
]

+
∑

a∈A
E
[
R Da(L

−1F )
]

= E
[
ϕ′(F )〈DF,−DL−1F 〉L2(A)

]
+ E

[
〈R,−DL−1F 〉L2(A)

]
.
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Then,

∣∣∣E
[

1

λ
(F +

r

λ
)ϕ′(F )− Fϕ(F )

] ∣∣∣

≤
∣∣∣∣E
[
ϕ′(F )

( 1

λ
(F +

r

λ
)− 〈DF,−DL−1F 〉L2(A)

)]∣∣∣∣
+
∣∣E
[
〈R,−DL−1F 〉L2(A))

]∣∣ = B1 +B2.

Since ϕ′ is bounded, we get

B1 ≤ ‖ϕ′‖∞E

[∣∣∣ 1
λ

(F +
r

λ
)− 〈DF,−DL−1F 〉L2(A)

∣∣∣
]

and from (36), we deduce that

B2 ≤ ‖ϕ′′‖∞
∑

a∈A
E
[
|DaF |2|DaL

−1F |
]
.

The proof follows from (34) and (24).

Proof of Theorem 5.13. For any a ∈ A,

Da(XiXj) =





XaXj if a = i

XiXa if a = j

0 otherwise.

Then,

DaF =
∑

(i,a)∈A 6=
f(i, a)XiXa +

∑

(j,a)∈A 6=
f(a, j)XaXj = 2

∑

(i,a)∈A 6=
f(i, a)XiXa,

so that
LF = −

∑

a∈A
DaF = −2F and L−1F = −1

2
F.

With our notations, the first term of the right-hand-side of (25) becomes

E



∣∣∣∣∣∣
2F + 2ν − 2

∑

a∈A

∑

(i,j)∈A2

f(i, a)f(j, a)X2
aXiXj

∣∣∣∣∣∣


 ≤

2∑

i=1

Ai, (38)

where

A1 = 2E



∣∣∣
∑

(i,a)∈A2

f2(i, a)(X2
aX

2
i − 1)

∣∣∣


 ,

A2 = 2E



∣∣∣∣∣∣
F −

∑

a∈A

∑

(i,j)∈A 6=
f(i, a)f(j, a)X2

aXiXj

∣∣∣∣∣∣


 .
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We first control A1. According to the Cauchy-Schwarz inequality,

A2
1 ≤ 4E


 ∑

(i,a)∈A2

∑

(j,c)∈A2

f2(i, a)f2(j, c)(X2
aX

2
i − 1)(X2

cX
2
j − 1)




≤ 4(A11 +A12),

where

A11 = E


 ∑

(i,a)∈A2

f4(i, a)(X2
aX

2
i − 1)2


 ,

A12 = E


∑

a∈A

∑

(i,j)∈A 6=
f2(i, a)f2(j, a) (X2

aX
2
i − 1)(X2

aX
2
j − 1)


 ,

by orthogonality of the Xi’s. On the one hand,

A11 ≤
∑

(i,a)∈A2

f4(i, a)E

[(
X2
aX

2
i − 1

)2
]

=
(
E
[
X4

1

]2 − 1
) ∑

(i,a)∈A2

f4(i, a). (39)

On the other hand,

A12 = E


 ∑

(i,j)6=∈A2

∑

a∈A
f2(i, a)f2(j, a)(X2

aX
2
i − 1)(X2

aX
2
j − 1)




≤
∑

(i,j)6=∈A2

∑

a∈A
f2(i, a)f2(j, a)E

[
(X2

aX
2
i − 1)(X2

aX
2
j − 1)

]

=
(
E
[
X4

1

]
− 1
) ∑

(i,a)∈A2

f2(i, a)
∑

j 6=i
f2(j, a)

≤
(
E
[
X4

1

]
− 1
)
‖f ?1

2 f‖2L2(A). (40)

In a similar way, A2 ≤ A21 +A22, where

A21 = 2E



∣∣∣∣∣
∑

(i,j)∈A 6=
f(i, j)XiXj −

∑

(i,j)∈A 6=

∑

a∈A
f(i, a)f(j, a)XiXj

∣∣∣∣∣


 ,

A22 = 2E



∣∣∣∣∣
∑

(i,j)∈A 6=

∑

a∈A
f(i, a)f(j, a)XiXj

(
X2
a −E

[
X2
a

])
∣∣∣∣∣


 .
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As above,

A2
21 ≤ 4E




 ∑

(i,j)∈A 6=

(
f(i, j)−

∑

a∈A
f(i, a)f(j, a)

)
XiXj




2


= 4 ‖f − f ?1
1 f‖22. (41)

Furthermore, according to Cauchy-Schwarz inequality and by indepen-
dence, we have

A22 ≤ 2
∑

(i,j)∈A 6=
E

[
|XiXj |

∣∣∣
∑

a∈A
f(i, a)f(j, a)(X2

a − 1)
∣∣∣
]

≤ 2E



( ∑

(i,j)∈A 6=

∑

a∈A
f(i, a)f(j, a)(X2

a − 1)
)2




1/2

≤ 2


 ∑

(i,j)∈A 6=

∑

a∈A
f(i, a)2f(j, a)2E

[
X4
a − 1

]



1/2

≤ 2
(
E
[
X4

1

]
− 1
)1/2 ‖f ?1

2 f‖L2(A). (42)

The remainder term is given by

A3 =
∑

a∈A
E

[∫

EA

(
F (XA)− F (XA¬a;x)

)2
dPa(x) |DaL

−1F |
]
.

Once again, using the orthogonality, we have

Ga(XA) =

∫

EA

(
F (XA)− F (XA¬a;x)

)2
dPa(x)

= 4E′
[(∑

i∈A
f(i, a)XiXa −

∑

i∈A
f(i, a)XiX

′
a

)2
]

= 4E′
[

(Xa −X ′a)2
(∑

i∈A
f(i, a)Xi

)2
]

= 4
(∑

i∈A
f(i, a)Xi

)2
E′
[
(Xa −X ′a)2

]

= 4
(∑

i∈A
f(i, a)Xi

)2 (
X2
a + 1

)
.
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Thus,

E

[∑

a∈A
Ga(XA)2

]
= 16E

[∑

a∈A

(∑

i∈A
f(i, a)Xi

)4 (
X2
a + 1

)2
]

= 16
(
E
[
X4

1

]
+ 3
)
E
[
X4

1

] ∑

a∈A

∑

i∈A
f4(i, a)

+ 96
(
E
[
X4

1

]
+ 3
)∑

a∈A

∑

(i,j)∈A 6=
f2(i, a)f2(j, a)

≤ 16
(
E
[
X4

1

]
+ 3
)2∑

a∈A

∑

i∈A
f4(i, a) + 96

(
E
[
X4

1

]
+ 3
)
‖f ?1

2 f‖2L2(A). (43)

Moreover,

∑

a∈A
E
[
|DaL

−1F |2
]

=
1

4

∑

a∈A
E
[
|DaF |2

]

=
∑

a∈A
E




 ∑

(i,a)∈A 6=
f(i, a)XiXa




2


=
∑

(i,a)∈A 6=
f2(i, a) = ν. (44)

Combine (39)–(44) to obtain (26).
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