期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS | 卷:129 |
Behavior of the Hermite sheet with respect to the Hurst index | |
Article | |
Araya, Hector1  Tudor, Ciprian A.2,3  | |
[1] Univ Valparaiso, Fac Ingn, CIMFAV, Casilla 123-V, Valparaiso 4059, Chile | |
[2] Univ Lille 1, Lab Paul Painleve, F-59655 Villeneuve, France | |
[3] Romanian Acad, ISMMA, Bucharest, Romania | |
关键词: Wiener chaos; Hermite process; Rosenblatt process; Fractional Brownian motion; Multiple stochastic integrals; Cumulants; Self-similarity; Multiparameter stochastic processes; | |
DOI : 10.1016/j.spa.2018.07.017 | |
来源: Elsevier | |
【 摘 要 】
We consider a d-parameter Hermite process with Hurst index H = (H-1, . . , H-d) is an element of (1/2, 1)(d) and we study its limit behavior in distribution when the Hurst parameters H-i, i = 1, . . , d (or a part of them) converge to 1/2 and/or 1. The limit obtained is Gaussian (when at least one parameter tends to 1/2) and non-Gaussian (when at least one-parameter tends to 1 and none converges to 1/2). (C) 2018 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_spa_2018_07_017.pdf | 693KB | download |