期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:120
A wavelet analysis of the Rosenblatt process: Chaos expansion and estimation of the self-similarity parameter
Article
Bardet, J-M1  Tudor, C. A.2 
[1] Univ Paris 01, SAMM, F-75534 Paris, France
[2] Univ Lille 1, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
关键词: Multiple Wiener-Ito integral;    Wavelet analysis;    Rosenblatt process;    Fractional Brownian motion;    Noncentral limit theorem;    Self-similarity;    Parameter estimation;   
DOI  :  10.1016/j.spa.2010.08.003
来源: Elsevier
PDF
【 摘 要 】

By using chaos expansion into multiple stochastic integrals, we make a wavelet analysis of two self-similar stochastic processes: the fractional Brownian motion and the Rosenblatt process. We study the asymptotic behavior of the statistic based on the wavelet coefficient; of these processes. Basically, when applied to a non-Gaussian process (such as the Rosenblatt process) this statistic satisfies a non-central limit theorem even when we increase the number of vanishing moments of the wavelet function. We apply our limit theorems to construct estimators for the self-similarity index and we illustrate our results by simulations. (C) 2010 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2010_08_003.pdf 364KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次