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Abstract

We consider a d-parameter Hermite process with Hurst index H = (Hy,..,Hy) €

WN
o ©

d e e e A
(%, 1) and we study its limit behavior in distribution when the Hurst parameters

H;,;i = 1,..,d (or a part of them) converges to 3 and/or 1. The limit obtained is
Gaussian (when at least one parameter tends to %) and non-Gaussian (when at least

one-parameter tends to 1 and none converges to 3).
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1 Introduction
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Several recent works investigated the behavior of some fractional processes, called the Her-
mite processes, with respect to the Hurst parameter (see [3], [19], [2]). The Hermite process
of order ¢ > 1 and with self-similarity index H € (%, 1) lives in the qgth Wiener chaos. It is
defined as a multiple stochastic integral, i.e. for every t > 0

240 = ctta) [ amon) .. [ vt ( [ t(s—yn;(“lf)...(s—yq>1‘5+17”) 1)

aouaaoabshbh
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where 2 = max(z,0), ¢(H, ¢) is a normalizing positive constant chosen such that E (Z}J{(l))2 =
1 and (B(y))yer is a Wiener process with time interval R. The process (1) is H-self-similar
and it has stationary increments and long memory.
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The class of Hermite processes includes the fractional Brownian motion (fBm) which
is obtained for ¢ = 1 and the Rosenblatt process (¢ = 2). The fBm is the only Gaussian
Hermite process. The Hermite process is non-Gaussian if ¢ > 2. These processes have been
widely studied since the seventies (see the monographs [14], [18] and the references therein).

Let us start by presenting some known facts concerning the behavior of the Hermite
processes with respect to the Hurst parameter. If ¢ = 1 then there is not too much to
discuss. It is well-known that Z}q concides in distribution with the Brownian motion if
H = 1 and with the process (tZ);>0 if H = 1 where Z denotes (throughout the work) a
standard normal random variable, i.e. Z ~ N(0,1).

The case ¢ = 2 has been discussed in [19]. It has been shown that Z% converges
weakly as H — %, in the space of continuous functions C([0,7]) (" > 0), to a Brownian
motion while if H — 1, it tends to (t%(Z2 —1))t>0, Z2 — 1 being a so-called centered
chi-square random wvariable. The main argument of the proofs relies on the expression of
the characteristic function of the Rosenblatt process.

In the case ¢ > 3 we know from [3] that, if H — %, then again the process Z%
defined by (1) converges weakly to a Brownian motion in C([0,7]). The proof is based on
the Fourth Moment Theorem. Similar results for the generalized Hermite process can be
found in [2] or [3], and for Rosenblatt Ornstein-Uhlenbeck process in [16].

In a first step, we discuss the unsolved case concerning the asymptotic behavior of
the Hermite process Z}, when H — 1. We show that it converges weakly in C([0,T]) to
the stochastic process (tﬁHq(Z ))tejo,r) Where H, is the Hermite polynomial of degree g.
Since the limit is not Gaussian and we have no tractable information on the characteristic
function of (1) when ¢ > 3, we will need a different argument from [3] or [19], based on
the non-central limit theorem. Notice that there is an interesting contrast with the case of
the generalized Hermite process treated in [2] and [3]. In these works, the limits is always
non-Gaussian unless the parameters tend jointly to the boundary between long and short
memory, while in our case we may have Gaussian limits.

Next, we consider the case of a d-parameter Hermite process (or Hermite sheet,
denoted by ZI({id in the sequel) with d-dimensional Hurst parameter H = (Hy,.., Hy) €
(%, 1)d. Given the results recalled above, it is natural and interesting to ask what happens
when one or several components H; converge to the boundary of the interval of definition.

We found the following results:

e If at least one of the parameters H; goes to 1/2 (and the other parameters are fixed
in (3,1) or converge to 1) then the Hermite sheet Zgid converges weakly in C([0, T])
to a d-parameter Gaussian process.

o If (Hj,, . Hj) — (1,.,1) € RF (1 < k < d) where 4y = {ji...jx} C {1,2,...,d}
and the parameters Hj,j € {1,2,..,d} \ {ji, .., jx} := A are fixed, then the process
ZIq{’d converges weakly in C([0,7]?) to the d-parameter stochastic process (Xt)t>0

defined by X = (t) 4, ZIq_id_k(tzk) where (Zgl’d_k(tzk)) ., 18 a (d—Fk)-parameter

t7, ERY



O©CoO~NOUTAWNER

Hermite process and (t) 4, = t01) - $02) ... ¢0k) if ¢ = (¢ (D).

o If (Hy,Hs,...,H;) — (1,1,..,1) € R? then the process Zﬂd converges weakly in
C([0,T]%) to the stochastic process (<t>dﬁHq(Z))tzo where (t)g =t t(D if t =
1

GRARIC)

The first point is proved via the Fourth Moment Theorem while the proof of the second
and third point are based on the non-central approximation of the Hermite sheet, see [13]
or [15]. We also included a separate (easier) proof in the case ¢ = 2, based on the cumulants,
although this can also be obtained from the general case.

We organized our work as follows. Section 2 contains some preliminaries. We
introduce the Hermite sheet and remember several of its properties, and we also give the
basic tools of Malliavin calculus needed throughout the paper. In Section 3 we analyze
the asymptotic behavior with respect to the Hurst parameter of the Rosenblatt sheet. As
mentioned above, we provided a specific proof for this case based on the fact that the law of
a multiple integral of order two is completely determined by the cumulants. Finally, Section
4 is devoted to the study of the behavior of the Hermite sheet of general order. The main
argument of the proof relies on the non-central approximation of the Hermite sheet by some
partial sums.

2 Preliminaries

In this section, we introduce the Hermite sheet and we present the tools from the stochastic
calculus on Wiener space needed in the sequel.

2.1 The Hermite sheet

The Hermite sheet has been introduced in [7]. We recall its definition and its basic properties
(see also [13], [15] or [18]).

Let us introduce some notation. For d € N\ {0} we will work with multi-parametric
processes indexed in R?. We shall use bold notation for multi-indexed quantities, i.e.,

a=(ay,ag,...,aq), b= (b1,...bq), @ = (ai,..,aq), ab = [[°, a;b;, l]a —b|* = [, |as —
d d N

bi%, a/b = (a1/b1,az/ba,...,aq/ba), [a,b] = []lai,bi], (ab) = [[(aibi), > ai =
=1 =1 i=0

N1 N2 Ng d
Z Z Z iy g,y ab = Haf", and a < b iff a1 < by,a2 < be,...,aq < by (analo-

i1=049=0  iq=0 i=1
gously for the other inequalities). Also
sl = ([51], -, [5a]) € Z¢ and (s)q:= s1...54 € R (2)

where [-] denotes the integer part.
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Let ¢ > 1 integer and the Hurst multi-index H = (Hy, Ha, ..., Hy) € (3,1)%. The
Hermite sheet of order q and with self-similarity index H is given by

Zi(t)

+(1) +(d) q o .
(14 (14
’q / / / Sl - ylaj)+(2 ! ) . e (Sd — ydd)_i_(z q )
Rd-q
dsq dW(yll,...,ydl) AW (y1.,q, - '-ayd,q)

= c<H,q>/Rd.q/o .1]1<s—yj>1 s awiy.awy, 3)

dsq. ..

where z; = max(z,0) and t = (t(),..,t?) € R%Z. The above stochastic integral is a
multiple stochastic integral with respect to the Wiener sheet (W(y),y € R%), see the
next section. The constant ¢(H, q) ensures that E (Z]‘il(t))2 = t2H for every t € Ri. As
pointed out before, when ¢ = 1, (3) is the fractional Brownian sheet with Hurst multi-index
H = (H,Hs,...,Hy) € (%, 1)4. For ¢ > 2 the process Zgl’d is not Gaussian and for ¢ = 2
we denominate it as the Rosenblatt sheet. The Hermite sheet is (Hj, .., Hg) self-similar, i.e.
for any h = (hq,...,hq) > 0 the stochastic process <Z§id(t)>te(Rd) given by
+

. e
ZEH(6) = e Zf <h) = RS LhG Z (21 2‘2) (4)

has the same finite dimensional distributions as the process Zgl.

The Hermite sheet also has stationnary increments. Let us recall that the increment
of a d-parameter process X on a rectangle [s,t] C R? s = (s1,...,84),t = (t1,...,tq), with
s <t (denoted by AX(]s,t])) is given by

_sd
AX([SJ—’]): Z (_1)d 2zt ZXerr-(tfs)- (5>
re{0,1}4

When d = 1 one obtains AX([s,t]) = X; — X while for d = 2 one gets AX([s,t]) =
Xt1,t2 - Xt1,82 - Xsl,tz + Xsl,sz'

The fact that the process (Zgid(t),t € RY) has stationary increments means that
for every h > 0,h € R? the stochastic processes (AZﬂd([O,t]),t € R?%) and (AZﬂd([h, h +
t]),t € R?) have the same finite dimensional distributions.

Moreover, its covariance is the same for every ¢ > 1 and it coincides with the
covariance of the d-parameter fractional Brownian motion, i.e.

( <t§Hi+s§Hi—|ti—si\2Hi)> ti, si > 0.

EZE(6) 25 (s)

:&

Jj=1
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The Hermite sheet is Holder continuous of order § = (41, .., d4) for every ¢ € (0, H), see [7],
[18].
In the rest of this work, we will denote by L; g 4 its kernel given by

1-H

Lt,H,q(Yl; . yq) = C(H, q) / H(S _ Yj)__,_<§+ q >dS (6)
0 o

for every y1,..,y4 € R? t € Ri.

2.2  Multiple stochastic integrals and the Fourth Moment Theorem

Here, we shall only recall some elementary facts; our main reference is [11]. Consider H a
real separable infinite-dimensional Hilbert space with its associated inner product (.,.),,,
and (B(¢),p € H) an isonormal Gaussian process on a probability space (Q,F,P), which
is a centered Gaussian family of random variables such that E (B(p)B(v)) = (@, )4, for
every ¢, € H. Denote by I, the gth multiple stochastic integral with respect to B. This I,
is actually an isometry between the Hilbert space H®? (symmetric tensor product) equipped
with the scaled norm ﬁ“ - ||« and the Wiener chaos of order ¢, which is defined as the

closed linear span of the random variables Hq(B(g)) where ¢ € H, |¢|lx = 1 and Hy is
the Hermite polynomial of degree ¢ > 1 defined by:

Hy(z) = (—1)% exp (f) % (exp <_””;>>  zER. (7)

The isometry of multiple integrals can be written as: for p, ¢ > 1, f € H®P and g € H®9,

WF,§)yee  ifp=
E(Ip<f>fq<g>)={ I Gee K0 (5)

0 otherwie.

It also holds that: .
Iq(f) = Iq(f)7
where f denotes the canonical symmetrization of f and it is defined by:

1
f(wla" : 7$q) = a Z f($0(1)7“‘ 7x0(q))7

T o€,

in which the sum runs over all permutations o of {1,...,q}.
In the particular case when H = L?(T,B(T), 1) , the rth contraction f ®, g is the
element of H®@P+1=27) which is defined by:

(f @r g) (81, Sprstiyeeestqr)
— fTT dup...durf(S1,. .05 Spers Uty oy Up)g(t1, .o tger, UL, .., Uy), (9)

for every f € L*([0,T)"), g € L*([0,T]?) and r = 1,...,p Aq.
We will use the following famous result initially proven in [12] that characterizes the
convergence in distribution of a sequence of multiple integrals torward the Gaussian law.
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Theorem 1 Fizn > 2 and let (F, k> 1), Fy = I, (fx) (with fr € HO" for every k > 1
), be a sequence of square-integrable random variables in the nth Wiener chaos such that
E [F,?] — 1 as k — co. The following are equivalent:

1. the sequence (Fy);>q converges in distribution to the normal law N(0,1);
2. E[F}] =3 as k — oo;

3. forall1 <1 <n—1, it holds that klirn | fr @1 frllyo2m-n = 0;
—00

Other equivalent condition can be stated in term of the Malliavin derivatives of Fy, see [10].

3 The Rosenblatt case

Let us first consider the case ¢ = 2. In this situation, the process (Z%I’d(t)> . given by
t

(3) is called the Rosenblatt sheet (or the d-parameter Rosenblatt process) and lives in the
second Wiener chaos. It is given by

224(4) = o(H, 2) /Rd /Rd dW(yl)dW(yQ)/Ot] ds(s —y1)2 (s —y2)? (10)

[

where (W(y))yegre a d -parameter Wiener sheet. The normalizing constant c¢(H, 2), which
ensures that ZZ (1) has unit variance, is given by (see e.g. [18], Proposition 3.1)

H(2H — 1)
28 (5,1-H)>

c(H,2)? = (11)

where 3 is Beta function 3(p,q) = fl

o 2271 (1 = 2)9"dz,p,q > 0 and with the notation

d
— (@) )
B(a,b) gﬂ(a 09)

if a = (a,..,a¥)and b = (b, ..,b(?). This constant ¢(H,2) plays an important role
in our calculations since it determines the asymptotic behavior with respect to the Hurst
parameter.

In order to understand the limit behavior in distribution with respect to H of the

process (Ziid(t))t>0v it suffices to analyze the behavior of its cumulants. This is because
the distributions of random variables in the second Wiener chaos are entirely determined

by their cumulants. This is the reason why we prefer to present a separate proof in the case
q = 2, although it can be obtained from the results stated later.



O©CoO~NOUTAWNER

Let us denote by kp,(F), m > 1 the mth cumulant of a random variable F. Tt is
defined as

kEm(F) = (—1) pr InE(e tF)]tzo,

if e L™(). When G = I5(f) is a multiple integral of order 2 with respect to a Wiener
sheet (B(y)),ecrd, then its cumulants can be computed as

km(G) = 2" (m — 1)!/ duy ...duy, f(ur,uz) f(uz,uz). .. f(Wm-1, ) f (W, ar).

(RE)m
(12)
Let us compute the cumulants of the Rosenblatt sheet. We need the following
formula (see [18] Lemma 3.1): if a € (0, 3)

/R(u — y)‘i_l(v — y)i_ldy = pla,1—2a)lu— 0\2“_1. (13)

Proposition 1 Consider the Rosenblatt sheet Z%I’d given by (10). Let N > 1, \1,.., Ay € R
and t1,..,ty € Ri. Deenote by k,, the mth cumulant. Then

N N N
ki (Z Ajzﬁd(tj)> =0, ko (Z Aﬂiﬂ(‘w)) = > MNRu(tit;)  (14)
i=1 =1

ij=1

and for m > 3

N N
b (D NZi65) | = 28 M (m - DIHEHEH-1)% > )\il....)\im/ /
i=1 [Ovtil] [Ovtim]
(15

i1yeyim=1
— 81 ’H_l. )
Proof: Clearly, since the first cumulant is the expectation and the second cumulant is the
variance, we have

dsi...dsp|s1 — SQ|H_1...|Sm

N N
k1 (Z Ajzfid(tj)> —E (Z Ajzﬁd(tj)> =0
=1 =1
and

N N 2 N
ko (Z Ajziid(tj)> —E (Z Ajzfid(tj)> = Y MNRa(tit)).
=1 =1

i,j=1
Consider the kernel Lg g2 of the Rosenblatt sheet given by (6). We compute the
cumulants of order m > 3 via the formula (12). Since

N N
SNz ) =1 <Z /\thi,Hﬁ)
=1 =1

7
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we will have

N
. (z Ajzaw)
=1

N
2m=L(m — 1) A ....)\Z-m/ dy1..dym
( ) Z ! (Rd)m,

i1, im=1

x Ly, m2(y1,y2) Lt H2(Y2,Y3) Le; B 2(Ym—1,Ym)Lt;, H2(Ym, Y1)

111 7,27 Zm 10

= mel( — 1 |C H, 2 Z iy e Z'm\/(‘ 2 dyi..dym

114yt =1
H
/ dsi(s1 —y1)?
[O,til]

and by interchanging the order of integration and by using the integrals dy;, ¢ = 1,..,m via
(13) we obtain

-1

H_ 4 H H_ 4
(s1-y2)F .. x /[ (o )£ om = y1)]
0,t

N m
Z Z H
=1

1155 im =1
/[o,t

/ dsy...dsy|s; — soF sy, — s |HT!
(0,6

i1]

= 22 Y(m—1)(2H(2H — 1)) Z Aiy ..
B1yeim=1
X / / dsi...dsp|s1 — SQ|H_1...|Sm — sl|H_1
[Oﬂtil] [Ovtim]
and this is the right-hand side of (15). [ |

Remark 1 In the one-parameter case (d =1) the formulas (14), (15) are well known, see
e.g. [14] or [9].

From Proposition 1, we immediately get the cumulants of the Rosenblatt process multiplied
by a deterministic function.

Remark 2 AssumeY (t) = thIZJ’d(t) where gy is deterministic and ZIQI’d(t) is the Rosenblatt
sheet (10). Then

N N N
k1 (Z AjY(tj)> =0, ke (Z AjY(’Gj)) = D Aidjge,ge, Ru(ti, t;)
i=1 =1

4,j=1
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and for m > 3

N N
Ko (Z)\jY(tj)> = 22 '(m—-1DIHEH-1)? > )\il....)\imgtil...gtim/t’ ].../[Ot. |
=1 ybiq i

11,5im =1 [0

’H_l.. |

ASm — Sl‘H_l.

dsi...dspy|s1 — s2
This follows from (14) and (15) since Y (t) = Is (gyL¢ 11,2) with Ly p1.2 from (6).

We now deduce the asymptotic behavior of the Rosenblatt sheet Zil’d with respect
to its Hurst parameter via the analysis of its cumulants. We have the following result.

Theorem 2 Let (ZIQid(t))t>0 be given by (10). Consider A = {j1,..,jrx} C {1,..,d} such
that 1 < k < d. Let A, = {1,..,d} \ Ap.

We introduce the following notation:

Hy, = (Hj,, ..., Hj,), ta, = (9, tU0)) and (t) 4, = 0,10k (16)
and
1. Assume Hyp, — (%,,%) € R*. Assume that the parameters Hj,j € Ay, are fized.

Then the process ZIQI’d converges weakly in C([0,T)%) to a d-parameter centered Gaus-
sian process (X (t))¢>0 with covariance

EX.Xs = | [] (t(a)/\s(a)> I Be, (¢®,s®) | . (17)

a€Ay beAL

2. Assume Hy, — (1,1,..,1) € RE. Assume that the parameters Hj,j € Ay, are fized.
Then the process ZIZ{’d converges weakly in (C[0,T]%) to the d-parameter stochastic
process (Xt)t>0 defined by

2,d—k
Xe=(t)a 2y (tz,) (18)

where (Z%I’d_k(tzk» is a (d — k)-parameter Rosenblatt process.

o pd—Fk
b7, ERy

3. Assume H = (Hy,..,Hy) — (1,..,1) € R, Then the process ZIQI’d converges weakly in
C([0,T)9) to the d-parameter stochastic process (X¢)s>o defined by

Xe= (0 (28~ 1) (19)

where Z ~ N(0,1) and (t)q is defined by (2).
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4. Denote by By = {l1,..,l,} C{1,..,d} withp>1 and p+k < d. Suppose B,N Ay = 0.

Assume Hy, — (%,,%) e R* and Hp, — (1,..,1) € RP. Assume that the H,
with j € {1,2,..,d} \ (Ax U By) are fizred. Then the process Zfl’d converges weakly in

C([0,T)%) to a d-parameter Gaussian process (X (t))t>0 with covariance

EX Xs = H (@ A (@) H +(0) 5(b) H Ry, (£, s | . (20)

acAy beBp c€ALUB,

Proof: We first prove the convergence of finite dimensional distributions for points 1. -4.
and then we prove the tightness.

We start with the proof of point 1.. From (15), combined with Lemma 3.3 and
Corollary 3.1 in [2], the cumulants of order bigger than of equal to 3 of the finite dimensional
distributions of Zfi’d converge to zero if 2H — 1 = Hle(QHi —1) — 0, i.e. if there exists
i € 1,..,d such that H; — 1/2. This means that ZI2_I’d converges in the sense of finite
dimensional distributions to a Gaussian process.

Let A\; € R, t; € ]Rﬁlr for j = 1,..,N. From formula (14), we notice that first

cumulant of Zf\i 1 )\jZI2{’d(tj) is zero while the second cumulant

N N
ko (Z /\jZIQ_I(tj)> = Z )\z’)\jRH(thtj)
i=1 ij=1
4/ b b
= > oy | T B ) | | TT R (87,68
i,5=1 a€Ay bezk
tends, as Hy, — (%, e %) e R* to
il b) (b
ST | IT @ ady | | T Ren @6
i,jil (ZEAk bezk

which represents the second cumulant (or the variance) of Zf\i 1A X (t;) where X is the
d-parameter centered Gaussian process with covariance (17).
Concerning the second point, we notice from (15) that for m > 3

N
km (Z Aﬂ%{(%’))
=1

N
= 2%71(777, — 1)' Z )\21)\27”

i1, tm=1

10
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I1 (Ha(zﬂam’z”/ " dsga>..../ oy st — s ) — 5|
[0,¢;] [0,t;0]

a€Ay
X H ( Hy(2H, — 1)) 2 / » dsgb)dsga)..../ " dsgi)dsgmsgb) = <53g))|Hb71 ..... |50 — s&b)|Hb1> :
beAy [0:t;°] [0,¢;)]

Since if Ha, — (1,...,1) € R¥, we have

Hy, (2H,, —1) = ] (Ha(2H, —1))% — 1
a€EAy
and
H / dsga)dsga)..../ dsgfi)dsgﬁf)\sga) — aagl)|H“71 ..... ]5%) — sga)|H‘f1 — H (tz(f)tz(i))
e \ 0] [0,t{)] cA
a k i1 im a k
we deduce that
N
d
m (Z NiZgi (tj)>
i=1
N
= 25 m-) S A | [T 9
i1yeytm=1 a€Ay
H ((Hb(QHb — 1))73/ " dsgb)dsga)..../ . dsfﬁb)ds%)\sgb) —sgb)\Hb_l ..... |5 —s(lb)|Hb_l>
bEA, 0,1 Otim]

which constitutes the mth cumulant of the finite dimensional distributions of the process
(18), see Remark 2. The analysis of the first two cumulants k1, k2 is immediate.

Concerning 3., from (15) and following the proof of point 2., we see that the first
cumulant is always zero and for m > 2, as H — (1,..,1) € R?

N N
ko (ijzﬁd(tj)> = 22 M m =Dl > At
=1 i1yenim=1

On the other hand, the cumulants of the linear combinations of Xy = (t)q—=(Z%2 — 1) =

Iy <ﬁ< Vd 1%2”) are

N
. (ZAthj> = 2" l(m—1)127% Z Aiyo i, (biy ) ()
=1

i1yetm=1

S

11
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N
= 2%—1(m— 1)' Z )\il----Aimtil-"tim-

i1eim=1

Point 4. is a slightly modification of point 1. From (15) we see that the cumulant
of order bigger than or equal to 3 converges to zero if at least one of the Hurst parameters
H;, i = 1,2..,d converges to 1/2. It then suffices to look at the limit of (14) in order to
conclude.

The tightness follows from the relation (see [7])

E|AZ§([s,t)]" = BIZI (1t — 1] -+ |ta — sa)™ (21)

(recall that A the higher order increment defined by (5)) and the criterion stated in Theorem
4 in [4] by using the fact that the process Z%I’d(t) is almost surely equal to 0 when t; =0
(here t = (t1, .., tq))- [ |

Let us discuss some particular cases.

Remark 3 If H; — % for every i = 1,..,d, then ZI2{’d converges weakly in C([0,T]%) to a
d-parameter Brownian motion.

If H — % and Ho, .., Hy are fized in (%, 1), then Zil’d converges weakly in C(]0,T]%)
to a d-parameter Gaussian process (X (t))¢>0 with covariance

d
EX: X = (tl A 81) H RH]. (tj, Sj).
=2

If Hi — 1 and the other indices are fized, then the Rosenblatt sheet (10) converges
to the process

X(t(l),..7t(d)) = tZ%I’dil(t(Q), ey t(d)).

4 The behavior of the Hermite sheet of arbitrary order

Assume ¢ > 2, H = (Hy,..,Hy) € (%, l)d and let Zgl’d be a Hermite sheet given by (3), We
will analyze the behavior of Zlq{’d where the Hurst parameters (or some of them) converge
to % or to 1.

From the result obtained in the previous section in Theorem 2. it would be natural
to expect a central limit theorem when at least one of the parameters H;,7 = 1, .., d converges
to one half and a non-central limit convergence when at least one parameter converges to 1
(and none to %) This will be indeed the case. therefore, we separate this section into two
parts: in the first we study the convergence for the Hurst index in the vicinity of % and in
the second part we regard the behavior when the Hurst index is close to 1.

12
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4.1 Convergence when at least one Hurst parameter converges to 1/2

As mentioned before, given Theorem 2, we would expect the convergence to a Gaussian
limit if at least one H; goes to one half. In this situation, since we deal with sequences
of multiple Wiener-It6 integrals, an excellent tool to prove the convergence is the famous
Fourth Moment Theorem (recalled in Theorem 1) by [12].

Recall that the constant from (3) ¢(H, g) is given by .

H(2H - 1)
.
alp (3 - 158, =20

Let us state the main result from this section. The limit will be the same as in
Theorem 2 but the proof is different.

c(H,q)? = (22)

Theorem 3 Let <ZIq_I’d(t))t>0 be given by (3). Let the notation from Theorem 2 prevail.
%7 e %) € R¥. Assume that the parameters Hj,j € Ay are fized.

Then the process ZIq{’d converges weakly in C([0,T)%) to a d-parameter centered Gaus-
sian process (X (t))¢>0 with covariance (17).

1. Assume Hy, — (

2. Assume Hy, — (%,,%) € R* and Hp, — (1,..,1) € RP. Assume that the H,

with j € {1,2,..,d} \ (Ax U Bp) are fixed. Then the process Zgl’d converges weakly in
C([0,T)%) to a d-parameter Gaussian process (X (t))t>0 with covariance (20).

Proof: We will apply the Fourth Moment Theorem by proving that point 3. in Theorem
1) is satisfied. We need to calculate

Lt,H,q O Lt,H,q

for every r =1,2,..,q — 1 with L¢ g1 4 from (6).
Note that L; 4 is a symmetric function in (R%)?. For every yi, .., ya,—2r € R?

(Lthyq S Lt,H,q) (ylv ooy y2q—2r)

= / 4 Lt,H,q(yh cy Yg—r, U1, - ur)Lt,H,q(Yq—r—l-la -y ¥Y2g—2r, U1, ..oy uT)dul“'du’I‘
(R4)"

= ¢(H,q)* / duy...du,
(R4)"
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and by calculating the integrals du; through (13),

(Ltag @r Liayg) (Y17 s Y2q-2r)

1 1-— 2—2H (H r
= c(H,q)*B <2— 7 > /0 / dudv|u - v|

- 1,1-H 2q—2r H
Hu i)+ () H (V—YJ)+(2 =)

j=q—r+1

and

”Lt,H,q Qp Lt,H,q ‘%2 (Re(2q—27))

1 1—H 2 - 2H
= c(H,9)*B8 (= — weudyog_or
c(H,q)"B (2 . > /Rd)% y 1. dy2q—2

t t q—r (1,1-H 2q—2r (1.1 o
/ / dudv 1_[(113’3')+<2Jr ? ) H (V*Yj)+(;+ ? >|U—V|M
" =1 j=q—r+1

t t q—r (1,1-H 2q—2r e -
X/ / du'dv’ 1_‘[(‘1/_}"1')+<;+ X ) H (V/—Yj)+(§+qu)|U'
00 j=1 j=q—r+1

and by Fubini and the identity (13) and (22)

||Lt,H,q Qp Lt,H,q ‘iz(Rqu%r))

2r 2q—2r
= C(H)Q)4/B <];Iv]- - H) /B <];Iu]- _H> '

t ot ot et L 2H-r i Te: ST 1)(q r) ) 2(H=1)(a=r)
dudvdudv[u a |u' —v'| T« u—u[ v — V| a

= ( (2H -1)) / / / / dudvdu'dv’

(H Lr ’ 2(H— 1)(q r) 2(H-1)(g—r)
W =V fu - vV

><|u—v|

Going now to the finite dimensional distributions, notice that for every Ay, ..,

and t1,..,ty € Ri we have

ZAW ZA%HQ

and we can similarly show that for every r =1,..,q¢ — 1

14
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N

N N
> NLymg | @ | D NLewg | = D Aedj (L pg) @ (Lt )
=1 j=1 k=1

1 1-H 2—2H\" [t rt 2H-1)r
ZAW 7q2ﬂ<— | )//dudwu—v\ ;
2 q q o Jo

k,j=1

q-r (1,1-H 2q—2r _(141-H
1_[(11—}’j)+(2+ B ) H (V—}’J')Jr<2jL b )
J=1 Jj=q—r+1

The above relation implies

N N 2
D AiLe g | @ | D AjLe g
j=1 Jj=1 L2(RA(20-2))
tr tr
— ( (2H — 1)) Z A / / / / dudvdu’dv’'
2-ye 20 2(H-1)(a-) 2(H-1)(q-1)
xX|u—v| ju" —v'| \u—u| a |v — v/ a

Thus, due to Lemma 3.3 and Corollary 3.1 in [2] (which shows that the above integral
dudvdu’dv’ is finite), the quantity

N N
Jj=1 Jj=1

2

1.2 (Rd(?q—Zr) )

converges to zero for every » = 1,..,q — 1 and this implies that the random variable
Zé-v:l )ijIq_I’d(tj) converges in distribution to a centered Gaussian random variable with
variance equal to

N N
. a a b b
im B[S )] = > o [T @A) TT Ba (), 4)
ij)_>(§7"72 ]:1 ],k:l aeAk bezk

2

=

(Hjl 30y

N

= E| ) NX(t)
j=1

where X is the Gaussian field with covariance (17). The second point of the conclusion
follows the same lines. |

15
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Remark 4 In particular, if H; — % for every i = 1,..,d, then ZIq{’d converges weakly in
C([0,T)%) to a Brownian sheet. We retrieve a result in [3].

Obviously, the proof of Theorem 8 holds in particular for q = 2 by providing a
different proof to Theorem 2.

4.2 Convergence when at least one Hurst parameter converges to 1

We now analyze the limit behavior of Zgid with ¢ > 3 integer, when at least one of the Hurst
indices H;,7 = 1, ..,d converges to 1 and none of them converges to zero. We already gained
some intuition from the study of the case ¢ = 2. We showed in Theorem 2 that, when k
of the Hurst indices Hy,.., Hy tend to 1 (1 < k < d), the weak limit of the d-parameter
Rosenblatt process is a (d — k)-parameter Rosenblatt process multiplied by a deterministic
function of k variables. When all the H;,7 = 1,..,d converge to 1, then the weak limit of
ZI2{’d is <t>d%H2(Z ) where Hj is the Hermite polynomial of order 2 and Z is a standard
normal random variable.

A similar phenomenon will happen when ¢ > 3. Since we deal with elements of the
Wiener chaos of order 3 of higher, we cannot use anymore, as in the proof of Theorem 2,
the argument based on cumulants. Instead, we will use a proof based on the non-central
limit theorem (see [6] or the monographs [10] and [18]).

We separate again the proof into two cases: d =1 and d > 2.

4.2.1 Behavior of the Hermite sheet: case d=1, ¢ > 2.

In order to make our approach easier and to avoid the use of complicated vectorial notation,
let us start with the case d = 1. Consider the Hermite process (Z?il (t))ez0 = (Z3(1))e=0
defined by (1). We will recall the following key argument for our proof: if H, is the gth
Hermite polynomial (7), the sequence

[N{]-1
1 ’ !
Zf n(t) = N > H, <Bl€{+1 — By )
k=0

converges in the sense of finite dimensional distributions to the Hermite process d(H, q)(Z5;(t))¢>o-

Above BH' is a fBm with index H' € (1 — -, 1) and (see relation (2.11) in [13])

2q°
H'(2H' —1))? 1-H
d(H,q)? = qILCH =D - : 2
(Ho)? = g5y : (23)
This is the well known non-central limit theorem (see [6], [8], [17], [10]).
The idea of the proof is simple: write formally
lim Z%(t) = lim lim d(H,q) ' Z} y(t 24
Jim Z (1) = lim lim d(H,q)" Zj x (1) (24)

and suppose that we can switch the two limits. Then

. . . -1
fm, Zy () = Jim lim, d(H,q)™ 25 (1)

16
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Since obviosly the process BY converges as H — 1 in the sense of finite dimensional
distributions to tZ, where Z is a standard normal random variable, we have for every
N>1

[Nt]—1
_ 11 1 [Nt 1

q = — = - —  —
lim Zj, (1) = NG /;:0 H,(Z) Ui N H,(Z) —>Nt\/qu(Z).

Below, we will make this heuristics rigourous. The main difficulty is to interchange
the two limits in (24) and to do this, we will need some uniform convergence (in the sense
of characteristic functions, see Proposition 2 below) of Z}, \ to Z},.

For A1,..,Ap € Rand tq,..,t, > 0, we let 7

p p
Vap =Y Nd(H,q) ' Zf y(t;) and Viy =Y N Z(t). (25)
j=1 j=1
Also, let for every a € R
gno(H) =E (eYV1r) and go(H) = E (V1) (26)

the characteristic functions of the random variables Vi 7, and Vi, respectively. We show
below the uniform convergence with respect to H of the characteristic function of Vi g, to
the characteristic function of Vi .

Proposition 2 For every 0 < e < %, we have for every a € R

sup  [gN,a(H) — ga(H)| = sup \9N.o(H) = go(H)| =N 0.
He[3+e,1) H'€[1—5-4e,1)

Proof: Since | — ¢!%| < |al|z — y| for every z,y, a € R, we have

1
9N.0(H) = go(H)| < |a|E VN p — Vil < |of (E \VNHp — VH,p!2> g
Thus, it we need to prove

2
sup E ‘VN,H@ — VH@‘ —Nooo 0.
H/€[1-5-+¢,1)

It suffices to show that for every fixed ¢ > 0

2
sup  E\d(H,q) 7' Z} y(t) = Z](t)| —N-00 O
H'€[1-L +e,1) '

with d(H, q) from (23).

17
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Now, from the proof of Proposition 3.1 in [5], we have the following estimate for the
mean square of the difference ZJ, \(t) — Z3,(t)

2
E ‘Z}J{’N(t) —d(H, Z?q(t)‘
N-—1
— (. q) A (H(2H — 1N Y

1 1 , q
[(/ du/ dv[k—l—i—u—v\zH_Q)
k,1=0 0 0
1 1 1 1
—2/ dv </ du|k—z+u—u\2H’—2> +/ du/ dv|k—l+u—v|q(2H/_2)]
0 0 0 0

1 1 q
d(H,q)"2(H'(2H' —1))IN2a—1-2aH’ 3 [(/0 du/o dolr +u — U‘ZH/—2>

re’l

1 1 q 1 1
2/ dv </ du|r+uv|2H/_2> +/ du/ dv|r+uv]q(2H/_2)} = A(H")
0 0 0 0

Notice that

IN

sup A(H') = sup A(H")
H’e[l—i—i-s,l) H’e[l—i—i—a,l]

because A(1) = 0. On the other hand, A is clearly continuous on [1 — i +¢e,1] so it is
bounded above and there exists Hy € [1 — 2%] + ¢, 1] such that

sup A(H') = A(Hy).
H'€[l—5,+e,1)

We have Hy € [1 — 2—1(1 +¢,1) because A(1) = 0. Consequently,

2
sup  B|d(H,q)7' 28 y(t) — Z1(t)| = A(H,) < CN>I~172t0
He[l—5-+e1)

where the last inequality has been showed in Proposition 3.1 in [5]. Since Hy € [1— 2%1 +e,1),
N2a—1-2qHo < N—=2¢5 5 0. This concludes the proof. |

Theorem 4 Assume ZEI 1s a Hermite process. Then as H — 1, ZEI converges weakly in
C([0,TY) to the stochastic process (tﬁHq(Z))tzo.

Proof: We will prove the convergence of finite dimensional distributions, since the tight-
ness follows from the relation (21). Consider the linear combinations Vi r, and Vi, given
by (25) and their characteristic function gy o(H), go(H) defined in (26). We can write

Arim E <6m Z;’:l)\jd(Haq)Z?_I(tj)> = lim ga(H)
—1 H—}l
= 1 li H).
Hm, Hm g, (H)

18
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Recall that if f;,7 > 1 is a sequence of functions on D C R converging uniformly to
fon D and if a is a limit point for D, then lim;_ o lim,_, fj(x) = limgy_q f(z) provided

that lim,_,, f(x),limg_q f;(x) exist.
Using the uniform convergence from Proposition 2, we have, since Z},  converges

in the sense of finite dimensional distributions to [Nt] \}H (Z)
lim E ( "azpzﬂjz?ﬂtﬂ) . H) = lim 1 H
am B iy 9ol H) = NznoozfinlgNa( )
_ lim B (SN )
N—o0
- E <€ia2§:1 A.it.iﬁHq(Z)>
and this gives the conclusion of the theorem. |

4.2.2 Behavior of the Hermite sheet: case d >1, ¢ > 2.

In the multiparameter case d > 1, we will use the same idea related to the approximation
of the Hermite sheet by some partial sums, but the situation is more complex and the
limit depends on the number of Hurst parameters that converges to 1. Let us define, for
N=(NWO, ND):=(N,.,N)eZi,

[Nt]

RO SO WACIC (B ) 1)

i=1

H _

where H, is Hermite polynomial of degree ¢ (7), B ZH’q is the d-parameter fractional

Brownian sheet, A is its high-order increment (5) and
1-H
.

H =1- (28)

It has been shown in [13], Proposition 3.5 (see also [15]) that the sequence ZﬁdN(t)
(27) converges in sense of finite dimensional distributions to d(H, q)ZI‘{id with

[(H/(2H' — 1))

d(H. q)" = H(2H - 1)

(29)
Let us start again by explaining the heuristic idea of the proof. Assume first that
H = (Hy,.,Hy) — (1,..,1) € R As before we write

lim Z&¢ lim lim d(H,q) 'Z%% (t
a2 (0) = Jimy Jim d(H. ) 23 (©)

and suppose again that we can switch the two limits. Then

. ,d _ —1 d
s, Zyg (8) = Jim lim, d(H, o)™ Z ().

19
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By the definition of generalized increments (5), the self-similarity of BH (see (4)) and the
fact that the process B¥ converges in the sense of finite dimensional distributions to (t)qZ
when H goes to 1, where Z is a standard normal random variable, we will have for every
N>1

[Nt]
Jim Zi{(®) = 7 > THa(2) = R T HA2) o ©a 1 Hy(2)

since d(H, q) —n_,.1)erd V'

A more 1nterest1ng case is when (Hj,,.., H;,) — (1,..,1) € R* (1 < k < d) where
{J1, - Jx} € {1,2,..,d} and the parameters Hj,j € {1,2,..,d} \ {j1, .., jr} are fixed. Recall
the notation Ay, Hy,,ta,, (t)a, from (16). Notice that we have the following convergence
in the sense of finite dimensional distributions

’ H_
BT (t) —H,, (1, )ers Xt = ()4, B Ak (t,) (30)

and also
d(H, q) TPH,, —(1,..,1)ERE d(sz,q — k).

In this case, under the same heuristics as in the one dimensional case and by using
the convergence of (27) to the Hermite sheet d(H, q)Zf_id, we formally get, by assuming that
we can invert the limits over Hy, and over N and via the self-similarity property (4),

lim Z%4(t) = lim lim d(H, q) ' 2% (¢
(Hjy oo Hy )= (Lo 1) R H (t) N—»50 Hy, —+(1,...,1)cR* (H,q) H,N()

[Nt(jl)] [Nt 12)} [Nt(jd)}
= lim lim N

J NN S5 S (AR (i-1))

i1=1 10=1 tg=1

= lim lim N~ Ha N~
N—ooo HA,Q—>(1,-.,1)6]R’€ H H

a€A beA),
[Nt(ﬂl)] [Nt j2) ] [Nt(]d)}
Z Z Z (ABH 1—11]))
i1=1 12=1 1g=1
[NtGD)] [Nt(52)] [NtUa)]
— lgiinoozv*k [I Ny |dHs a0 > > ... ) H(AX([i-1L1])
beA, i1=1  dg=1 ig=1

with X the d-parameter Gaussian process (30). Notice that

AX (= 1,1)) = At (i LIDABE (i = 1,1)) = AB, (i — 1,1)

Al Ak

20
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Therefore

. d
lim  Z§(t)

HAk%(l,..,l)

= lim N J] N | [NtUI]L [Nty g — k)

N—oo o
be Ay
[Nt(®)]
Hy . .
7 <ABtAk ([1—1,1})>
beAy, =1

= (t)a, 25 ()

where Zl?i(dfk) (t) is the (d — k)- parameter Hermite sheet . We used the convergence of (27)
for in the d — k parameter case and the fact that

N7E[NtUV] L [NtUR] s n o0 (t)a

ket

As before, we need to make this heuristics rigourous. First we have to noticed that
the partial sum ZﬂdN(t) can be written as a multiple stochastic integral with respect to
d-parameter Wiener process as follows (see formula (3.15) in [13])

Z{N () = I, (FN(¢, )

d
where for every t € R¢

[Nt]
FN(t,) = NeO-H)=1 N (pNy &4 (31)
i=1
and
N._nH 7 . .
i = NE L

where Ly 1,4 is given by (6) and L[i—l 1
N 'N
over ['t, &]. We know from [13], [15] that FN(t,) is Cauchy sequence in H®? where
H = L*(R%) converging to L¢ m 4 in H®9.
We will need to estimate the mean square of the increment Z&% (t) — Z4%(t). For
every t, we have the isometry

] H,q ThADS the high-order increment (5) of Lt 114

BJa(H,0) " 2 () - 250" = BlL, (@0 FN0) ~ L (g (32)

_ 2
= =gq! Hd(HaQ) 1FN(ta )= Lewg H®q

so we need to estimate ||d(H,q) ' FN(t,-) — Ly g i@. This is done below. The proof is
a multidimensional extension of the proof of Proposition 3.1 in [5] combined with the proof
of Proposition 3.3 in [13]. Its proof is postponed to the Appendix.
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Proposition 3 If FN be given by (31) and let Ly 11 4 be given by (6). Then for everyt >0

|d(H q) FN(t, )7LthHi®q
[N [N

= d(H,q) H!(2H - 1)1N*~22H Z Z [(/ du/ dv — v+ il 2)‘_21 H)>

D=71¢2)=1
! ! 1 2 H 1) 29(1-H')
- Q/d'v(/ du|i™ — i + u— o 2) /du/ dv‘( +u—'u‘ .
0 0

Now, for A1,..,A\p € Rand ty,..,t, € R‘i, we consider the linear combinations
p
VNap = Y Nd(H, q) 7 Zf) (b)) and Vi, = Z)\ Z3 (¢ (33)
j=1

Also, let for every u € R
gnu(H)=E (ei“VN’H’P) and g,(H) = E (ei“VH’P) , (34)

the characteristic functions of the d-dimensional random variables VN 1, and Vg ), respec-
tively. We need the uniform convergence of the charactertistic functions in order two invert
the order of the limits (with respect to N( and with respect to the Hurst parameter)).
Recall that H' = (H], .., H}) is constructed from H = (Hj, .., Hy) via (28).

Proposition 4 If 1 < k < d, then For every 0 < e < 2%1, we have for every u € R

sup lgNu(H) — gu(H)| = sup |9Nu(H) = gu(H)| = N—00 0
Hi,. Hy€[:+e,1] Hi,. Hj€[l—5 +e1]k

Proof: Since for every u € R

1

lgnw(H) — gu(H)| < [uE |[VNnmp — Vil < [yl (E VNHp — VH,p\2> ’

Thus, it we need to prove that for every fixed t > 0

2
d d
sup E|Z{(6) - 2§ (t)) N 0.
H17~7Hk€[1—i+6,1]k

By Proposition 3, we need to show that

sup A(H') = N0 0 (35)
H,. ,H’e[lfﬁJrs,l]k

where

A(RE) = d(EL ) (R (2R — NP2 W da |ty
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1 1 , q 1 1 ,
— 2/ dv (/ dulu — v 4 r|?H 2) +/ du/ dv|u—v+r|*QQ(1*H)
0 0 0 0

From the proof of Proposition 3.1 in [5], we can show that
A(H/) < CN2q—1—2qH’ _ CN2q—1—2qH{”'N2q—1—2qHZi (36)

if N = (N,N,..,N) € Z%. Indeed, it follows from (a slightly adaptation of) relations
(3.6), (3.7) and (3.8) in [5] that the term after > ;4 above is less that a constant times
|r|2qH "=201 which implies that the series is convergent, since H] > 1 — 2%;'

Since the function (H1, .., H}) — A(H’) is obviously continuous on the compact set
[1— i + ¢, 1], there exists a multi-index

1
Hy = (Ho,1, Hoz2, .., Hok) € [1 = 271 + ¢, 1]"7

such that
sup A(H/) = A(H0,17"7H0,k7H/€+17"aHd)'
Hl,..,HkE[l—i—f—a,l]k

Assume k < d. From the inequality (36) (recall that Hj_,,..., H are fixed in
11— i +¢,1) since Hgy1,.., Hq are fixed in (3,1)),

CN?2a—1-2qHo  N29—1-2qHok N2a—1-2q9Hk11  N2¢—1-2qHq

CON20-1-2aHp1 | N20-1-2Ha o

A(H[)J) 3] HO,]C) Hk+17 () Hd)

VANV

If Kk = d, then (Ho;,Hop2,..,Ho) should be different from (1,...,1) € R* since
A(1,1,...,1) = 0. Thus, there exists ip € {1,2,...,d} such that Hp;, # 1 and then from
(36), we have

2q_1_2H0,i
A(Hoy -, Ho ks He 41, - Ha) < CNy ¢ —N-oo 0.

1

This proves (35) and gives the conclusion of the theorem. [ ]

The main result on the behavior of the Hermite sheet when the parameters are near
1 states as follows.

Theorem 5 Let (Zgl’d(t)> . be given by (3). Let the notation from Theorem 2 prevail.
t>

1 1
55 5

Then the process Zﬂd converges weakly in C([0,T]%) to the d-parameter stochastic
process (Xi)t>0 defined by

1. Assume Hp, — ( ) € R¥. Assume that the parameters Hj,j € Ay are fized.

X = (t)a, 2" " (t1) (37)

where (Zﬁd_k(tzk)> is a (d — k)-parameter Hermite process.

d—k
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2. Assume (Hy,..,Hg) — (1,.,1) € R?.  Then the process Zgl’d converges weakly in
C([0,T)%) to the d-parameter stochastic process (X¢)s>0 defined by

Xo = (8)a—= Hq(Z) (38)

where Z ~ N(0,1).

Proof: Tightness follows from (21), so we need to prove the convergence of finite dimen-
sional distributions. Let us recall that the linear combinations VN u, and Vg, are given
by (33) and their characteristic function gnu(H), gu(H) (34). In a similar way to the one
dimensional case, we can write

lim E(ewzizl)‘jzﬁd(tjo = lim gu(H)
(Hjl,.‘.,ij)—)(l,..‘,l) (Hjl,...,H]'k)—}(l,...,l)
= lim lim gnw(H
(Hjy oo Hyp ) =5(1,.,1) N—r00 u(HD.

and the calculations at the beginning of this section will give the conclusion of the theorem,
similarly to the proof of Theorem 4. |

Remark 5 Theorem covers also the case ¢ = 2. In this case we retrieve the result from
Theorem 2. If g =1, then the limit (37) is the Gaussian sheet <t>AkZ1’d_k(tZk).

5 Appendix

Proof of Proposition 3: We can write

[Nt] [Nt]

IEN( ) Fer = NOT2 57 ST ()™ () e

iH=1i@—=1

INt] [Nt
N2 =2 % Z (hu)) ( (2))>7-l
(1=
[Nt [Ntﬂ
_ HNZq(l H)—2 Z Z TH’ kl ]{22
Jj=1 k1=1ko=1

where H' is given by (28) and
/ ki—1 k (ko —1 k
_ AR2H! H; 1 K1 H) 2 2
(L (e L ()]
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2H R /N ha/N 21—H'
= N H'(2H'—1)/ / lu — o) 72HD qudv.
(k1—1)/N J (k2—1)/N

From the above relation,

) ﬁ %] % b Sl —2(1—H’) /
LN ) B = (2 1N (/ I, ) dud“)
q J=1 k1=1ko=1 k1—1)/N ko — 1)/N
[Nt] [Nt] iV/N i®/N / q
= (H/)q(QH/ qu 2 Z Z </ / ‘u _ V‘—Q(l—H ) dudv)
iD= \YEP-1)/NJGE-1)/N
Now, by letting N goes to infinity, we have, if F'(t,-) = Ling
d t; t; )
F(t %q H]’q2HJ’ 1)4 20(1=H)) gu.d
7=1 0 0

[Nt;] th bt /N /kQ/N

= H(H’ H;—1)7> " > /

k=1 kp=17 (kF1=1)/N J (k=1
[Nt] [Nt i) /N i?/N ,
= (H)I2H —1)? Z / / lu —v|~20H) gudy
{D_13@_ M_1)/N /(i@ -1)/N
Now, if ¢ € H is smooth
[Nt]
<FN(t> ')a ¢®q>H®q = NQ(l_H = Z <h1(1) ’ (Z))"H
=1
d INt;] 7 kN 1 o\ ¢
= H H;)1(2H; — 1)IN9~ ! Z / dv/ dud(u)u — v[*572 ] .
j=1 k=1 \/(k=1)/N 0

By letting again N goes to infinity, we have

q
1(2H] — 1)1 /dv </ dug(u u|2H5-—2>

(F(t,), 6% yoa

::]g

Therefore, we have

d [Nt;] k/N / q
(F(6,), FN(t, )pea = [[(H)(2H] —1)IN" Z / dv (/ du|u—v|2Hi_2> :

Jj=1
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d Nt N k/N q
= H (H)?(2Hj — 1)IN" Y / </ du|u—u|2Hj2> :
j=1 /N

k=1 (k=1)

[Nt] [Nt] ;)N iV/N , q
= (H)IQH - 1)"N"! Y Z/ (/ du\u—v\QH—2> :
@1y (i

{D_1i@_q —1)/N

Taking into account all the previous calculations, and by some elementary change
of variables, we have

HFN ) B F ’ H?—[@q
[Nt] [Nt] (1)/N i(2)/N , q
= (H)7(2H' — Z DO e / / lu — v| 2 gudv
iDH—1i@=1 W —1)/NJ(GEP-1)/N

i® /N iO/N , q
- 2Nq_1/ dv / duju — v|?H 2
A®-1)/N iW-1)/N

iV/N i?/N ,
+ / / lu— v| 72 gugy
(iW-1)/N J(i®-1)/N

[Nt 1 HI) q
= (H)I(2H — N2q 2—2qH’ Z Z [(/ du/ dv —v+i® — 2)‘ )
i0=1i@ =1
! ! L\t 1 ~2q(1-H)
- 2/ dv (/ duliV —i® 4y — y?H 2) +/ du/ dv’i(l) fi(2)+ufv‘
0 0 0 0
and with this, the result is achieved. |
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