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Casilla 123-V, 4059 Valparaiso, Chile.

hector.araya@postgrado.uv.cl

2 Laboratoire Paul Painlevé, Université de Lille 1
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Abstract

We consider a d-parameter Hermite process with Hurst index H = (H1, ..,Hd) ∈(
1
2 , 1
)d

and we study its limit behavior in distribution when the Hurst parameters
Hi, i = 1, .., d (or a part of them) converges to 1

2 and/or 1. The limit obtained is
Gaussian (when at least one parameter tends to 1

2 ) and non-Gaussian (when at least
one-parameter tends to 1 and none converges to 1

2 ).

2010 AMS Classification Numbers: 60H05, 60H15, 60G22.

Key Words and Phrases: Wiener chaos, Hermite process; Rosenblatt process;
fractional Brownian motion; multiple stochastic integrals; cumulants; self-similarity, multi-
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1 Introduction

Several recent works investigated the behavior of some fractional processes, called the Her-
mite processes, with respect to the Hurst parameter (see [3], [19], [2]). The Hermite process
of order q ≥ 1 and with self-similarity index H ∈

(
1
2 , 1
)

lives in the qth Wiener chaos. It is
defined as a multiple stochastic integral, i.e. for every t ≥ 0

ZqH(t) = c(H, q)

∫

R
dB(y1) . . .

∫

R
dB(yq)

(∫ t

0
(s− y1)

−( 1
2
+ 1−H

q
)

+ . . . (s− yq)
−( 1

2
+ 1−H

q
)

+

)
(1)

where x+ = max(x, 0), c(H, q) is a normalizing positive constant chosen such that E
(
ZqH(1)

)2
=

1 and (B(y))y∈R is a Wiener process with time interval R. The process (1) is H-self-similar
and it has stationary increments and long memory.
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The class of Hermite processes includes the fractional Brownian motion (fBm) which
is obtained for q = 1 and the Rosenblatt process (q = 2). The fBm is the only Gaussian
Hermite process. The Hermite process is non-Gaussian if q ≥ 2. These processes have been
widely studied since the seventies (see the monographs [14], [18] and the references therein).

Let us start by presenting some known facts concerning the behavior of the Hermite
processes with respect to the Hurst parameter. If q = 1 then there is not too much to
discuss. It is well-known that Z1

H concides in distribution with the Brownian motion if
H = 1

2 and with the process (tZ)t≥0 if H = 1 where Z denotes (throughout the work) a
standard normal random variable, i.e. Z ∼ N(0, 1).

The case q = 2 has been discussed in [19]. It has been shown that Z2
H converges

weakly as H → 1
2 , in the space of continuous functions C([0, T ]) (T > 0), to a Brownian

motion while if H → 1, it tends to (t 1√
2
(Z2 − 1))t≥0, Z2 − 1 being a so-called centered

chi-square random variable. The main argument of the proofs relies on the expression of
the characteristic function of the Rosenblatt process.

In the case q ≥ 3 we know from [3] that, if H → 1
2 , then again the process ZqH

defined by (1) converges weakly to a Brownian motion in C([0, T ]). The proof is based on
the Fourth Moment Theorem. Similar results for the generalized Hermite process can be
found in [2] or [3], and for Rosenblatt Ornstein-Uhlenbeck process in [16].

In a first step, we discuss the unsolved case concerning the asymptotic behavior of
the Hermite process ZqH when H → 1. We show that it converges weakly in C([0, T ]) to
the stochastic process (t 1√

q!
Hq(Z))t∈[0,T ] where Hq is the Hermite polynomial of degree q.

Since the limit is not Gaussian and we have no tractable information on the characteristic
function of (1) when q ≥ 3, we will need a different argument from [3] or [19], based on
the non-central limit theorem. Notice that there is an interesting contrast with the case of
the generalized Hermite process treated in [2] and [3]. In these works, the limits is always
non-Gaussian unless the parameters tend jointly to the boundary between long and short
memory, while in our case we may have Gaussian limits.

Next, we consider the case of a d-parameter Hermite process (or Hermite sheet,

denoted by Zq,dH in the sequel) with d-dimensional Hurst parameter H = (H1, ..,Hd) ∈
(12 , 1)d. Given the results recalled above, it is natural and interesting to ask what happens
when one or several components Hi converge to the boundary of the interval of definition.
We found the following results:

• If at least one of the parameters Hi goes to 1/2 (and the other parameters are fixed

in (12 , 1) or converge to 1) then the Hermite sheet Zq,dH converges weakly in C([0, T ]d)
to a d-parameter Gaussian process.

• If (Hj1 , ..,Hjk) → (1, .., 1) ∈ Rk (1 ≤ k < d) where Ak := {j1, .., jk} ⊂ {1, 2, .., d}
and the parameters Hj , j ∈ {1, 2, .., d} \ {j1, .., jk} := Ak are fixed, then the process

Zq,dH converges weakly in C([0, T ]d) to the d-parameter stochastic process (Xt)t≥0
defined by Xt = 〈t〉Ak

Zq,d−kH (tAk
) where

(
Zq,d−kH (tAk

)
)
tAk
∈Rd−k

+

is a (d−k)-parameter

2
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Hermite process and 〈t〉Ak
= t(j1) · t(j2) · · · t(jk) if t = (t(1), .., t(d)).

• If (H1, H2, ...,Hd) → (1, 1, .., 1) ∈ Rd, then the process Zq,dH converges weakly in
C([0, T ]d) to the stochastic process (〈t〉d 1√

q!
Hq(Z))t≥0 where 〈t〉d = t(1)...t(d) if t =

(t(1), .., t(d)).

The first point is proved via the Fourth Moment Theorem while the proof of the second
and third point are based on the non-central approximation of the Hermite sheet, see [13]
or [15]. We also included a separate (easier) proof in the case q = 2, based on the cumulants,
although this can also be obtained from the general case.

We organized our work as follows. Section 2 contains some preliminaries. We
introduce the Hermite sheet and remember several of its properties, and we also give the
basic tools of Malliavin calculus needed throughout the paper. In Section 3 we analyze
the asymptotic behavior with respect to the Hurst parameter of the Rosenblatt sheet. As
mentioned above, we provided a specific proof for this case based on the fact that the law of
a multiple integral of order two is completely determined by the cumulants. Finally, Section
4 is devoted to the study of the behavior of the Hermite sheet of general order. The main
argument of the proof relies on the non-central approximation of the Hermite sheet by some
partial sums.

2 Preliminaries

In this section, we introduce the Hermite sheet and we present the tools from the stochastic
calculus on Wiener space needed in the sequel.

2.1 The Hermite sheet

The Hermite sheet has been introduced in [7]. We recall its definition and its basic properties
(see also [13], [15] or [18]).

Let us introduce some notation. For d ∈ N\ {0} we will work with multi-parametric
processes indexed in Rd. We shall use bold notation for multi-indexed quantities, i.e.,
a = (a1, a2, . . . , ad), b = (b1, .., bd), α = (α1, .., αd), ab =

∏d
i=1 aibi, |a − b|α =

∏d
i=1 |a1 −

b1|αi , a/b = (a1/b1, a2/b2, . . . , ad/bd), [a,b] =
d∏

i=1

[ai, bi], (a,b) =
d∏

i=1

(ai, bi),
N∑

i=0

ai =

N1∑

i1=0

N2∑

i2=0

. . .

Nd∑

id=0

ai1,i2,...,id , ab =
d∏

i=1

abii , and a < b iff a1 < b1, a2 < b2, . . . , ad < bd (analo-

gously for the other inequalities). Also

[s]d := ([s1] , ..., [sd]) ∈ Zd and 〈s〉d := s1...sd ∈ R (2)

where [·] denotes the integer part.

3
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Let q ≥ 1 integer and the Hurst multi-index H = (H1, H2, . . . ,Hd) ∈ (12 , 1)d. The
Hermite sheet of order q and with self-similarity index H is given by

ZqH(t) = c(H, q)

∫

Rd·q

∫ t(1)

0
. . .

∫ t(d)

0




q∏

j=1

(s1 − y1,j)
−
(

1
2
+

1−H1
q

)

+ . . . (sd − yd,j)
−
(

1
2
+

1−Hd
q

)

+




dsd . . . ds1 dW (y1,1, . . . , yd,1) . . . dW (y1,q, . . . , yd,q)

= c(H, q)

∫

Rd·q

∫ t

0

q∏

j=1

(s− yj)
−
(

1
2
+1−H

q

)

+ ds dW (y1) . . . dW (yq) (3)

where x+ = max(x, 0) and t = (t(1), .., t(d)) ∈ Rd+. The above stochastic integral is a
multiple stochastic integral with respect to the Wiener sheet (W (y),y ∈ Rd), see the

next section. The constant c(H, q) ensures that E
(
ZqH(t)

)2
= t2H for every t ∈ Rd+. As

pointed out before, when q = 1, (3) is the fractional Brownian sheet with Hurst multi-index

H = (H1, H2, . . . ,Hd) ∈ (12 , 1)d. For q ≥ 2 the process Zq,dH is not Gaussian and for q = 2
we denominate it as the Rosenblatt sheet. The Hermite sheet is (H1, ..,Hd) self-similar, i.e.

for any h = (h1, . . . , hd) > 0 the stochastic process
(
Ẑq,dH (t)

)
t∈(Rd

+)
given by

Ẑq,dH (t) = hαẐqH

(
t

h

)
= hα1

1 ...hαd
d Ẑq,dH

(
t1
h1
, . . . ,

td
hd

)
(4)

has the same finite dimensional distributions as the process ZqH.
The Hermite sheet also has stationnary increments. Let us recall that the increment

of a d-parameter process X on a rectangle [s, t] ⊂ Rd, s = (s1, . . . , sd), t = (t1, . . . , td), with
s ≤ t (denoted by ∆X([s, t])) is given by

∆X([s, t]) =
∑

r∈{0,1}d
(−1)d−

∑d
i=1 riXs+r·(t−s). (5)

When d = 1 one obtains ∆X([s, t]) = Xt − Xs while for d = 2 one gets ∆X([s, t]) =
Xt1,t2 −Xt1,s2 −Xs1,t2 +Xs1,s2 .

The fact that the process (Zq,dH (t), t ∈ Rd) has stationary increments means that

for every h > 0,h ∈ Rd the stochastic processes (∆Zq,dH ([0, t]), t ∈ Rd) and (∆Zq,dH ([h,h +
t]), t ∈ Rd) have the same finite dimensional distributions.

Moreover, its covariance is the same for every q ≥ 1 and it coincides with the
covariance of the d-parameter fractional Brownian motion, i.e.

EZq,dH (t)Zq,dH (s) =

d∏

j=1

(
1

2

(
t2Hi
i + s2Hi

i − |ti − si|2Hi

))
ti, si ≥ 0.

4
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The Hermite sheet is Hölder continuous of order δ = (δ1, .., δd) for every δ ∈ (0,H), see [7],
[18].

In the rest of this work, we will denote by Lt,H,q its kernel given by

Lt,H,q(y1, ..,yq) = c(H, q)

∫ t

0

q∏

j=1

(s− yj)
−
(

1
2
+1−H

q

)

+ ds (6)

for every y1, ..,yq ∈ Rd, t ∈ Rd+.

2.2 Multiple stochastic integrals and the Fourth Moment Theorem

Here, we shall only recall some elementary facts; our main reference is [11]. Consider H a
real separable infinite-dimensional Hilbert space with its associated inner product 〈., .〉H,
and (B(ϕ), ϕ ∈ H) an isonormal Gaussian process on a probability space (Ω,F,P), which
is a centered Gaussian family of random variables such that E (B(ϕ)B(ψ)) = 〈ϕ,ψ〉H, for
every ϕ,ψ ∈ H. Denote by Iq the qth multiple stochastic integral with respect to B. This Iq
is actually an isometry between the Hilbert space H�q (symmetric tensor product) equipped
with the scaled norm 1√

q!
‖ · ‖H⊗q and the Wiener chaos of order q, which is defined as the

closed linear span of the random variables Hq(B(ϕ)) where ϕ ∈ H, ‖ϕ‖H = 1 and Hq is
the Hermite polynomial of degree q ≥ 1 defined by:

Hq(x) = (−1)q exp

(
x2

2

)
dq

dxq

(
exp

(
−x

2

2

))
, x ∈ R. (7)

The isometry of multiple integrals can be written as: for p, q ≥ 1, f ∈ H⊗p and g ∈ H⊗q,

E
(
Ip(f)Iq(g)

)
=

{
q!〈f̃ , g̃〉H⊗q if p = q

0 otherwie.
(8)

It also holds that:
Iq(f) = Iq

(
f̃
)
,

where f̃ denotes the canonical symmetrization of f and it is defined by:

f̃(x1, . . . , xq) =
1

q!

∑

σ∈Sq
f(xσ(1), . . . , xσ(q)),

in which the sum runs over all permutations σ of {1, . . . , q}.
In the particular case when H = L2(T,B(T ), µ) , the rth contraction f ⊗r g is the

element of H⊗(p+q−2r), which is defined by:

(f ⊗r g)(s1, . . . , sp−r, t1, . . . , tq−r)

=
∫
T r du1 . . . durf(s1, . . . , sp−r, u1, . . . , ur)g(t1, . . . , tq−r, u1, . . . , ur), (9)

for every f ∈ L2([0, T ]p), g ∈ L2([0, T ]q) and r = 1, . . . , p ∧ q.
We will use the following famous result initially proven in [12] that characterizes the

convergence in distribution of a sequence of multiple integrals torward the Gaussian law.

5
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Theorem 1 Fix n ≥ 2 and let (Fk, k ≥ 1) , Fk = In (fk) ( with fk ∈ H�n for every k ≥ 1
), be a sequence of square-integrable random variables in the nth Wiener chaos such that
E
[
F 2
k

]
→ 1 as k →∞. The following are equivalent:

1. the sequence (Fk)k≥0 converges in distribution to the normal law N (0, 1);

2. E
[
F 4
k

]
= 3 as k →∞;

3. for all 1 ≤ l ≤ n− 1, it holds that lim
k→∞

‖fk ⊗l fk‖H⊗2(n−l) = 0;

Other equivalent condition can be stated in term of the Malliavin derivatives of Fk, see [10].

3 The Rosenblatt case

Let us first consider the case q = 2. In this situation, the process
(
Z2,d
H (t)

)
t≥0

given by

(3) is called the Rosenblatt sheet (or the d-parameter Rosenblatt process) and lives in the
second Wiener chaos. It is given by

Z2,d
H (t) = c(H, 2)

∫

Rd

∫

Rd

dW (y1)dW (y2)

∫

[0,t]
ds(s− y1)

H
2
−1

+ (s− y2)
H
2
−1

+ (10)

where (W (y))y∈Rd a d -parameter Wiener sheet. The normalizing constant c(H, 2), which
ensures that Z2

H(1) has unit variance, is given by (see e.g. [18], Proposition 3.1)

c(H, 2)2 =
H(2H− 1)

2β
(
H
2 , 1−H

)2 . (11)

where β is Beta function β(p, q) =
∫ 1
0 z

p−1(1− z)q−1dz, p, q > 0 and with the notation

β(a,b) =
d∏

i=1

β
(
a(i), b(i)

)

if a = (a(1), .., a(d)) and b = (b(1), .., b(d)). This constant c(H, 2) plays an important role
in our calculations since it determines the asymptotic behavior with respect to the Hurst
parameter.

In order to understand the limit behavior in distribution with respect to H of the

process
(
Z2,d
H (t)

)
t≥0

, it suffices to analyze the behavior of its cumulants. This is because

the distributions of random variables in the second Wiener chaos are entirely determined
by their cumulants. This is the reason why we prefer to present a separate proof in the case
q = 2, although it can be obtained from the results stated later.

6
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Let us denote by km(F ), m ≥ 1 the mth cumulant of a random variable F . It is
defined as

km(F ) = (−i)n ∂
n

∂tn
ln E(eitF )|t=0,

if F ∈ Lm(Ω). When G = I2(f) is a multiple integral of order 2 with respect to a Wiener
sheet (B(y))y∈Rd , then its cumulants can be computed as

km(G) = 2m−1(m− 1)!

∫

(Rd)m
du1 . . . dumf(u1,u2)f(u2,u3) . . . f(um−1,um)f(um,u1).

(12)
Let us compute the cumulants of the Rosenblatt sheet. We need the following

formula (see [18] Lemma 3.1): if a ∈ (0, 12)

∫

R
(u− y)a−1+ (v − y)a−1+ dy = β(a, 1− 2a)|u− v|2a−1. (13)

Proposition 1 Consider the Rosenblatt sheet Z2,d
H given by (10). Let N ≥ 1, λ1, .., λN ∈ R

and t1, .., tN ∈ Rd+. Deenote by km the mth cumulant. Then

k1

(
N∑

i=1

λjZ
2,d
H (tj)

)
= 0, k2

(
N∑

i=1

λjZ
2,d
H (tj)

)
=

N∑

i,j=1

λiλjRH(ti, tj) (14)

and for m ≥ 3

km

(
N∑

i=1

λjZ
2,d
H (tj)

)
= 2

m
2
−1(m− 1)!(H(2H− 1))

m
2

N∑

i1,..,im=1

λi1 ....λim

∫

[0,ti1 ]
...

∫

[0,tim ]

ds1...dsm|s1 − s2|H−1...|sm − s1|H−1. (15)

Proof: Clearly, since the first cumulant is the expectation and the second cumulant is the
variance, we have

k1

(
N∑

i=1

λjZ
2,d
H (tj)

)
= E

(
N∑

i=1

λjZ
2,d
H (tj)

)
= 0

and

k2

(
N∑

i=1

λjZ
2,d
H (tj)

)
= E

(
N∑

i=1

λjZ
2,d
H (tj)

)2

=
N∑

i,j=1

λiλjRH(ti, tj).

Consider the kernel Lt,H,2 of the Rosenblatt sheet given by (6). We compute the
cumulants of order m ≥ 3 via the formula (12). Since

N∑

i=1

λjZ
2,d
H (tj) = I2

(
N∑

i=1

λjLti,H,2

)

7
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we will have

km

(
N∑

i=1

λjZ
2,d
H (tj)

)

= 2m−1(m− 1)!

N∑

i1,..,im=1

λi1 ....λim

∫

(Rd)m
dy1..dym

×Lti1 ,H,2
(y1,y2)Lti2 ,H,2

(y2,y3)...Ltim−1
,H,2(ym−1,ym)Ltim ,H,2(ym,y1)

= 2m−1(m− 1)!c(H, 2)m
N∑

i1,..,im=1

λi1 ....λim

∫

(Rd)m
dy1..dym

∫

[0,ti1 ]
ds1(s1 − y1)

H
2
−1

+ (s1 − y2)
H
2
−1

+ . . .×
∫

[0,tim ]
dsm(sm − ym)

H
2
−1

+ (sm − y1)
H
2
−1

+

and by interchanging the order of integration and by using the integrals dyi, i = 1, ..,m via
(13) we obtain

km

(
N∑

i=1

λjZ
2,d
H (tj)

)
= 2m−1(m− 1)!c(H, 2)m

N∑

i1,..,im=1

λi1 ....λimβ

(
H

2
, 1−H

)m

∫

[0,ti1 ]
...

∫

[0,tim ]
ds1...dsm|s1 − s2|H−1...|sm − s1|H−1

= 2
m
2
−1(m− 1)!(2H(2H− 1))

m
2

N∑

i1,..,im=1

λi1 ....λim

×
∫

[0,ti1 ]
...

∫

[0,tim ]
ds1...dsm|s1 − s2|H−1...|sm − s1|H−1

and this is the right-hand side of (15).

Remark 1 In the one-parameter case (d = 1) the formulas (14), (15) are well known, see
e.g. [14] or [9].

From Proposition 1, we immediately get the cumulants of the Rosenblatt process multiplied
by a deterministic function.

Remark 2 Assume Y (t) = gtZ
2,d
H (t) where gt is deterministic and Z2,d

H (t) is the Rosenblatt
sheet (10). Then

k1

(
N∑

i=1

λjY (tj)

)
= 0, k2

(
N∑

i=1

λjY (tj)

)
=

N∑

i,j=1

λiλjgtigtjRH(ti, tj)

8
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and for m ≥ 3

km

(
N∑

i=1

λjY (tj)

)
= 2

m
2
−1(m− 1)!(H(2H− 1))

m
2

N∑

i1,..,im=1

λi1 ....λimgti1 ...gtim

∫

[0,ti1 ]
...

∫

[0,tim ]

ds1...dsm|s1 − s2|H−1...|sm − s1|H−1.

This follows from (14) and (15) since Y (t) = I2 (gtLt,H,2) with Lt,H,2 from (6).

We now deduce the asymptotic behavior of the Rosenblatt sheet Z2,d
H with respect

to its Hurst parameter via the analysis of its cumulants. We have the following result.

Theorem 2 Let
(
Z2,d
H (t)

)
t≥0

be given by (10). Consider Ak = {j1, .., jk} ⊂ {1, .., d} such

that 1 ≤ k < d. Let Ak = {1, .., d} \Ak.
We introduce the following notation:

HAk
= (Hj1 , ..,Hjk), tAk

= (t(j1), ..., t(jk)) and 〈t〉Ak
= t(j1)...t(jk) (16)

and

1. Assume HAk
→
(
1
2 , ...,

1
2

)
∈ Rk. Assume that the parameters Hj , j ∈ Ak are fixed.

Then the process Z2,d
H converges weakly in C([0, T ]d) to a d-parameter centered Gaus-

sian process (X(t))t≥0 with covariance

EXtXs =


 ∏

a∈Ak

(
t(a) ∧ s(a)

)



∏

b∈Ak

RHb
(t(b), s(b))


 . (17)

2. Assume HAk
→ (1, 1, .., 1) ∈ Rk. Assume that the parameters Hj , j ∈ Ak are fixed.

Then the process Z2,d
H converges weakly in (C[0, T ]d) to the d-parameter stochastic

process (Xt)t≥0 defined by

Xt = 〈t〉Ak
Z2,d−k
H (tAk

) (18)

where
(
Z2,d−k
H (tAk

)
)
tAk
∈Rd−k

+

is a (d− k)-parameter Rosenblatt process.

3. Assume H = (H1, ..,Hd)→ (1, .., 1) ∈ Rd. Then the process Z2,d
H converges weakly in

C([0, T ]d) to the d-parameter stochastic process (Xt)t≥0 defined by

Xt = 〈t〉d
1√
2

(Z2 − 1) (19)

where Z ∼ N(0, 1) and 〈t〉d is defined by (2).

9
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4. Denote by Bp = {l1, .., lp} ⊂ {1, .., d} with p ≥ 1 and p+ k < d. Suppose Bp ∩Ak = ∅.
Assume HAk

→
(
1
2 , ..,

1
2

)
∈ Rk and HBp → (1, .., 1) ∈ Rp. Assume that the Hj

with j ∈ {1, 2, .., d} \ (Ak ∪ Bp) are fixed. Then the process Z2,d
H converges weakly in

C([0, T ]d) to a d-parameter Gaussian process (X(t))t≥0 with covariance

EXtXs =


 ∏

a∈Ak

(t(a) ∧ s(a))




∏

b∈Bp

t(b)s(b)




 ∏

c∈Ak∪Bp

RHc(t
(c), s(c))


 . (20)

Proof: We first prove the convergence of finite dimensional distributions for points 1. -4.
and then we prove the tightness.

We start with the proof of point 1.. From (15), combined with Lemma 3.3 and
Corollary 3.1 in [2], the cumulants of order bigger than of equal to 3 of the finite dimensional

distributions of Z2,d
H converge to zero if 2H − 1 =

∏d
i=1(2Hi − 1) → 0, i.e. if there exists

i ∈ 1, .., d such that Hi → 1/2. This means that Z2,d
H converges in the sense of finite

dimensional distributions to a Gaussian process.
Let λj ∈ R, tj ∈ Rd+ for j = 1, ..., N . From formula (14), we notice that first

cumulant of
∑N

i=1 λjZ
2,d
H (tj) is zero while the second cumulant

k2

(
N∑

i=1

λjZ
2
H(tj)

)
=

N∑

i,j=1

λiλjRH(ti, tj)

=

N∑

i,j=1

λiλj


 ∏

a∈Ak

RHa(t
(a)
i , t

(a)
j )




∏

b∈Ak

RHb
(t

(b)
i , t

(b)
j )




tends, as HAk
→
(
1
2 , ...,

1
2

)
∈ Rk to

N∑

i,j=1

λiλj


 ∏

a∈Ak

(t
(a)
i ∧ t

(a)
j )




∏

b∈Ak

RHb
(t

(b)
i , t

(b)
j )




which represents the second cumulant (or the variance) of
∑N

i=1 λjX(tj) where X is the
d-parameter centered Gaussian process with covariance (17).

Concerning the second point, we notice from (15) that for m ≥ 3

km

(
N∑

i=1

λjZ
2
H(tj)

)

= 2
m
2
−1(m− 1)!

N∑

i1,..,im=1

λi1 ....λim

10
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∏

a∈Ak

(
(Ha(2Ha − 1))

m
2

∫

[0,t
(a)
i1

]
ds

(a)
1 ....

∫

[0,t
(a)
im ]

ds(a)m |s(a)1 − s
(a)
2 |Ha−1.....|s(a)m − s(a)1 |Ha−1

)

×
∏

b∈Ak

(
(Hb(2Hb − 1))

m
2

∫

[0,t
(b)
i1

]
ds

(b)
1 ds

(a)
1 ....

∫

[0,t
(b)
im

]
ds(b)m ds(b)m |s(b)1 − s

(b)
2 |Hb−1.....|s(b)m − s(b)1 |Hb−1

)
.

Since if HAk
→ (1, ..., 1) ∈ Rk, we have

HAk
(2HAk

− 1) =
∏

a∈Ak

(Ha(2Ha − 1))
m
2 → 1

and

∏

a∈Ak

(∫

[0,t
(a)
i1

]
ds

(a)
1 ds

(a)
1 ....

∫

[0,t
(a)
im ]

ds(a)m ds(a)m |s(a)1 − s
(a)
2 |Ha−1.....|s(a)m − s(a)1 |Ha−1

)
→

∏

a∈Ak

(
t
(a)
i1
...t

(a)
im

)

we deduce that

km

(
N∑

i=1

λjZ
2,d
H (tj)

)

→ 2
m
2
−1(m− 1)!

N∑

i1,..,im=1

λi1 ....λim


 ∏

a∈Ak

t
(a)
i1
...t

(a)
im




∏

b∈Ak

(
(Hb(2Hb − 1))

m
2

∫

[0,t
(b)
i1

]
ds

(b)
1 ds

(a)
1 ....

∫

[0,t
(b)
im

]
ds(b)m ds(b)m |s(b)1 − s

(b)
2 |Hb−1.....|s(b)m − s(b)1 |Hb−1

)

which constitutes the mth cumulant of the finite dimensional distributions of the process
(18), see Remark 2. The analysis of the first two cumulants k1, k2 is immediate.

Concerning 3., from (15) and following the proof of point 2., we see that the first
cumulant is always zero and for m ≥ 2, as H→ (1, .., 1) ∈ Rd

km

(
N∑

i=1

λjZ
2,d
H (tj)

)
→ 2

m
2
−1(m− 1)!

N∑

i1,..,im=1

λi1 ....λimti1 ...tim .

On the other hand, the cumulants of the linear combinations of Xt = 〈t〉d 1√
2
(Z2 − 1) =

I2

(
1√
2
〈t〉d1⊗2[0,1]

)
are

km

(
N∑

i=1

λjXtj

)
= 2m−1(m− 1)!2−

m
2

N∑

i1,..,im=1

λi1 ....λim〈ti1〉...〈tim〉

11
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= 2
m
2
−1(m− 1)!

N∑

i1,..,im=1

λi1 ....λimti1 ...tim .

Point 4. is a slightly modification of point 1. From (15) we see that the cumulant
of order bigger than or equal to 3 converges to zero if at least one of the Hurst parameters
Hi, i = 1, 2.., d converges to 1/2. It then suffices to look at the limit of (14) in order to
conclude.

The tightness follows from the relation (see [7])

E
∣∣∆Z2

H([s, t])
∣∣p = E |Z|p (|t1 − s1| · · · |td − sd|)pH (21)

(recall that ∆ the higher order increment defined by (5)) and the criterion stated in Theorem

4 in [4] by using the fact that the process Z2,d
H (t) is almost surely equal to 0 when ti = 0

(here t = (t1, .., td)).

Let us discuss some particular cases.

Remark 3 If Hi → 1
2 for every i = 1, .., d, then Z2,d

H converges weakly in C([0, T ]d) to a
d-parameter Brownian motion.

If H1 → 1
2 and H2, ..,Hd are fixed in (12 , 1), then Z2,d

H converges weakly in C([0, T ]d)
to a d-parameter Gaussian process (X(t))t≥0 with covariance

EXtXs = (t1 ∧ s1)
d∏

j=2

RHj (tj , sj).

If H1 → 1 and the other indices are fixed, then the Rosenblatt sheet (10) converges
to the process

X(t(1),..,t(d)) = tZ2,d−1
H (t(2), ..., t(d)).

4 The behavior of the Hermite sheet of arbitrary order

Assume q ≥ 2, H = (H1, ..,Hd) ∈
(
1
2 , 1
)d

and let Zq,dH be a Hermite sheet given by (3), We

will analyze the behavior of Zq,dH where the Hurst parameters (or some of them) converge
to 1

2 or to 1.
From the result obtained in the previous section in Theorem 2. it would be natural

to expect a central limit theorem when at least one of the parameters Hi,i = 1, .., d converges
to one half and a non-central limit convergence when at least one parameter converges to 1
(and none to 1

2). This will be indeed the case. therefore, we separate this section into two
parts: in the first we study the convergence for the Hurst index in the vicinity of 1

2 and in
the second part we regard the behavior when the Hurst index is close to 1.

12
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4.1 Convergence when at least one Hurst parameter converges to 1/2

As mentioned before, given Theorem 2, we would expect the convergence to a Gaussian
limit if at least one Hi goes to one half. In this situation, since we deal with sequences
of multiple Wiener-Itô integrals, an excellent tool to prove the convergence is the famous
Fourth Moment Theorem (recalled in Theorem 1) by [12].

Recall that the constant from (3) c(H, q) is given by .

c(H, q)2 =
H(2H− 1)

q!β
(
1
2 − 1−H

q , 2−2Hq

)q . (22)

Let us state the main result from this section. The limit will be the same as in
Theorem 2 but the proof is different.

Theorem 3 Let
(
Zq,dH (t)

)
t≥0

be given by (3). Let the notation from Theorem 2 prevail.

1. Assume HAk
→
(
1
2 , ...,

1
2

)
∈ Rk. Assume that the parameters Hj , j ∈ Ak are fixed.

Then the process Zq,dH converges weakly in C([0, T ]d) to a d-parameter centered Gaus-
sian process (X(t))t≥0 with covariance (17).

2. Assume HAk
→
(
1
2 , ..,

1
2

)
∈ Rk and HBp → (1, .., 1) ∈ Rp. Assume that the Hj

with j ∈ {1, 2, .., d} \ (Ak ∪ Bp) are fixed. Then the process Zq,dH converges weakly in
C([0, T ]d) to a d-parameter Gaussian process (X(t))t≥0 with covariance (20).

Proof: We will apply the Fourth Moment Theorem by proving that point 3. in Theorem
1) is satisfied. We need to calculate

Lt,H,q ⊗r Lt,H,q

for every r = 1, 2, .., q − 1 with Lt,H,q from (6).
Note that Lt,H,q is a symmetric function in (Rd)q. For every y1, ..,y2q−2r ∈ Rd

(Lt,H,q ⊗r Lt,H,q) (y1, ..,y2q−2r)

=

∫

(Rd)r
Lt,H,q(y1, ..,yq−r,u1, ...,ur)Lt,H,q(yq−r+1, ..,y2q−2r,u1, ...,ur)du1...dur

= c(H, q)2
∫

(Rd)r
du1...dur

∫ t

0



q−r∏

j=1

(u− yj)
−
(

1
2
+1−H

q

)

+






r∏

j=1

(u− yj)
−
(

1
2
+1−H

q

)

+


 du

×
∫ t

0




2q−2r∏

j=q−r+1

(v − yj)
−
(

1
2
+1−H

q

)

+






r∏

j=1

(v − yj)
−
(

1
2
+1−H

q

)

+


 dv

13
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and by calculating the integrals dui through (13),

(Lt,H,q ⊗r Lt,H,q) (y1, ..,y2q−2r)

= c(H, q)2β

(
1

2
− 1−H

q
,
2− 2H

q

)r ∫ t

0

∫ t

0
dudv|u− v|

2(H−1)r
q



q−r∏

j=1

(u− yj)
−
(

1
2
+1−H

q

)

+






2q−2r∏

j=q−r+1

(v − yj)
−
(

1
2
+1−H

q

)

+




and

‖Lt,H,q ⊗r Lt,H,q‖2L2(Rd(2q−2r))

= c(H, q)4β

(
1

2
− 1−H

q
,
2− 2H

q

)2r ∫

(Rd)2q−2r

dy1...dy2q−2r

∫ t

0

∫ t

0
dudv



q−r∏

j=1

(u− yj)
−
(

1
2
+1−H

q

)

+






2q−2r∏

j=q−r+1

(v − yj)
−
(

1
2
+1−H

q

)

+ |u− v|
2(H−1)r

q




×
∫ t

0

∫ t

0
du′dv′



q−r∏

j=1

(u′ − yj)
−
(

1
2
+1−H

q

)

+






2q−2r∏

j=q−r+1

(v′ − yj)
−
(

1
2
+1−H

q

)

+ |u′ − v′|
2(H−1)r

q




and by Fubini and the identity (13) and (22)

‖Lt,H,q ⊗r Lt,H,q‖2L2(Rd(2q−2r))

= c(H, q)4β

(
H

2
, 1−H

)2r

β

(
H

2
, 1−H

)2q−2r

∫ t

0

∫ t

0

∫ t

0

∫ t

0
dudvdu′dv′|u− v|

2(H−1)r
q |u′ − v′|

2(H−1)r
q |u− u′|

2(H−1)(q−r)
q |v − v′|

2(H−1)(q−r)
q

=
1

q!2
(H(2H− 1))2

∫ t

0

∫ t

0

∫ t

0

∫ t

0
dudvdu′dv′

×|u− v|
2(H−1)r

q |u′ − v′|
2(H−1)r

q |u− u′|
2(H−1)(q−r)

q |v − v′|
2(H−1)(q−r)

q .

Going now to the finite dimensional distributions, notice that for every λ1, .., λN ∈ R
and t1, .., tN ∈ Rd+ we have

N∑

j=1

λjZ
q
H(tj) = Iq




N∑

j=1

λjLtj ,H,q




and we can similarly show that for every r = 1, .., q − 1

14
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


N∑

j=1

λjLtj ,H,q


⊗r




N∑

j=1

λjLtj ,H,q


 =

N∑

k,j=1

λkλj (Ltk,H,q)⊗r
(
Ltj ,H,q

)

=
N∑

k,j=1

λkλjc(H, q)2β

(
1

2
− 1−H

q
,
2− 2H

q

)r ∫ t

0

∫ t

0
dudv|u− v|

2(H−1)r
q



q−r∏

j=1

(u− yj)
−
(

1
2
+1−H

q

)

+






2q−2r∏

j=q−r+1

(v − yj)
−
(

1
2
+1−H

q

)

+


 .

The above relation implies

∣∣∣∣∣∣

∣∣∣∣∣∣




N∑

j=1

λjLtj ,H,q


⊗r




N∑

j=1

λjLtj ,H,q



∣∣∣∣∣∣

∣∣∣∣∣∣

2

L2(Rd(2q−2r))

=
1

q!2
(H(2H− 1))2

N∑

j,k=1

λkλj

∫ tj

0

∫ tk

0

∫ tj

0

∫ tk

0
dudvdu′dv′

×|u− v|
2(H−1)r

q |u′ − v′|
2(H−1)r

q |u− u′|
2(H−1)(q−r)

q |v − v′|
2(H−1)(q−r)

q .

Thus, due to Lemma 3.3 and Corollary 3.1 in [2] (which shows that the above integral
dudvdu′dv′ is finite), the quantity

∣∣∣∣∣∣

∣∣∣∣∣∣




N∑

j=1

λjLtj ,H,q


⊗r




N∑

j=1

λjLtj ,H,q



∣∣∣∣∣∣

∣∣∣∣∣∣

2

L2(Rd(2q−2r))

converges to zero for every r = 1, .., q − 1 and this implies that the random variable∑N
j=1 λjZ

q,d
H (tj) converges in distribution to a centered Gaussian random variable with

variance equal to

lim
(Hj1

,..,Hjk
)→( 1

2
,.., 1

2)
E




N∑

j=1

λjZ
q
H(tj)




2

=

N∑

j,k=1

λjλk
∏

a∈Ak

(t
(a)
j ∧ t

(a)
k )

∏

b∈Ak

RHb
(t

(b)
h , t

(b)
k )

= E




N∑

j=1

λjX(tj)




2

where X is the Gaussian field with covariance (17). The second point of the conclusion
follows the same lines.

15
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Remark 4 In particular, if Hi → 1
2 for every i = 1, .., d, then Zq,dH converges weakly in

C([0, T ]d) to a Brownian sheet. We retrieve a result in [3].
Obviously, the proof of Theorem 3 holds in particular for q = 2 by providing a

different proof to Theorem 2.

4.2 Convergence when at least one Hurst parameter converges to 1

We now analyze the limit behavior of Zq,dH with q ≥ 3 integer, when at least one of the Hurst
indices Hi, i = 1, .., d converges to 1 and none of them converges to zero. We already gained
some intuition from the study of the case q = 2. We showed in Theorem 2 that, when k
of the Hurst indices H1, ..,Hd tend to 1 (1 ≤ k < d), the weak limit of the d-parameter
Rosenblatt process is a (d− k)-parameter Rosenblatt process multiplied by a deterministic
function of k variables. When all the Hi, i = 1, .., d converge to 1, then the weak limit of
Z2,d
H is 〈t〉d 1√

2
H2(Z) where H2 is the Hermite polynomial of order 2 and Z is a standard

normal random variable.
A similar phenomenon will happen when q ≥ 3. Since we deal with elements of the

Wiener chaos of order 3 of higher, we cannot use anymore, as in the proof of Theorem 2,
the argument based on cumulants. Instead, we will use a proof based on the non-central
limit theorem (see [6] or the monographs [10] and [18]).

We separate again the proof into two cases: d = 1 and d ≥ 2.

4.2.1 Behavior of the Hermite sheet: case d = 1 , q > 2.

In order to make our approach easier and to avoid the use of complicated vectorial notation,
let us start with the case d = 1. Consider the Hermite process (Zq,1H (t))t≥0 := (ZqH(t))t≥0
defined by (1). We will recall the following key argument for our proof: if Hq is the qth
Hermite polynomial (7), the sequence

ZqH,N (t) :=
1

NH

[Nt]−1∑

k=0

Hq

(
BH′
k+1 −BH′

k

)

converges in the sense of finite dimensional distributions to the Hermite process d(H, q)(ZqH(t))t≥0.
Above BH′ is a fBm with index H ′ ∈ (1− 1

2q , 1) and (see relation (2.11) in [13])

d(H, q)2 = q!
(H ′(2H ′ − 1))q

H(2H − 1)
and H ′ = 1− 1−H

q
. (23)

This is the well known non-central limit theorem (see [6], [8], [17], [10]).
The idea of the proof is simple: write formally

lim
H→1

ZqH(t) = lim
H→1

lim
N→∞

d(H, q)−1ZqH,N (t) (24)

and suppose that we can switch the two limits. Then

lim
H→1

ZqH(t) = lim
N→∞

lim
H→1

d(H, q)−1ZqH,N (t)

16
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Since obviosly the process BH converges as H → 1 in the sense of finite dimensional
distributions to tZ, where Z is a standard normal random variable, we have for every
N ≥ 1

lim
H→1

ZqH,N (t) =
1√
q!

1

N

[Nt]−1∑

k=0

Hq(Z) =
1√
q!

[Nt]

N
Hq(Z)→N t

1√
q!
Hq(Z).

Below, we will make this heuristics rigourous. The main difficulty is to interchange
the two limits in (24) and to do this, we will need some uniform convergence (in the sense
of characteristic functions, see Proposition 2 below) of ZqH,N to ZqH .

For λ1, .., λp ∈ R and t1, .., tp ≥ 0, we let

VN,H,p =

p∑

j=1

λjd(H, q)−1ZqH,N (tj) and VH,p =

p∑

j=1

λjZ
q
H(tj). (25)

Also, let for every α ∈ R

gN,α(H) = E
(
eiαVN,H,p

)
and gα(H) = E

(
eiαVH,p

)
(26)

the characteristic functions of the random variables VN,H,p and VH,p respectively. We show
below the uniform convergence with respect to H of the characteristic function of VN,H,p to
the characteristic function of VH,p.

Proposition 2 For every 0 < ε < 1
2q , we have for every α ∈ R

sup
H∈[ 1

2
+ε,1)

|gN,α(H)− gα(H)| = sup
H′∈[1− 1

2q
+ε,1)

|gN,α(H)− gα(H)| →N 0.

Proof: Since |eiαx − eiαy| ≤ |α||x− y| for every x, y, α ∈ R, we have

|gN,α(H)− gα(H)| ≤ |α|E |VN,H,p − VH,p| ≤ |α|
(
E |VN,H,p − VH,p|2

) 1
2
.

Thus, it we need to prove

sup
H′∈[1− 1

2q
+ε,1)

E |VN,H,p − VH,p|2 →N→∞ 0.

It suffices to show that for every fixed t ≥ 0

sup
H′∈[1− 1

2q
+ε,1)

E
∣∣∣d(H, q)−1ZqH,N (t)− ZqH(t)

∣∣∣
2
→N→∞ 0

with d(H, q) from (23).

17
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Now, from the proof of Proposition 3.1 in [5], we have the following estimate for the
mean square of the difference ZqH,N (t)− ZqH(t)

E
∣∣∣ZqH,N (t)− d(H,ZqH(t)

∣∣∣
2

= d(H, q)−2(H ′(2H ′ − 1))qN2q−2−2qH′
N−1∑

k,l=0

[(∫ 1

0
du

∫ 1

0
dv|k − l + u− v|2H′−2

)q

−2

∫ 1

0
dv

(∫ 1

0
du|k − l + u− v|2H′−2

)q
+

∫ 1

0
du

∫ 1

0
dv|k − l + u− v|q(2H′−2)

]

≤ d(H, q)−2(H ′(2H ′ − 1))qN2q−1−2qH′∑

r∈Z

[(∫ 1

0
du

∫ 1

0
dv|r + u− v|2H′−2

)q

−2

∫ 1

0
dv

(∫ 1

0
du|r + u− v|2H′−2

)q
+

∫ 1

0
du

∫ 1

0
dv|r + u− v|q(2H′−2)

]
:= A(H ′)

Notice that
sup

H′∈[1− 1
2q

+ε,1)

A(H ′) = sup
H′∈[1− 1

2q
+ε,1]

A(H ′)

because A(1) = 0. On the other hand, A is clearly continuous on [1 − 1
2q + ε, 1] so it is

bounded above and there exists H0 ∈ [1− 1
2q + ε, 1] such that

sup
H′∈[1− 1

2q
+ε,1)

A(H ′) = A(H0).

We have H0 ∈ [1− 1
2q + ε, 1) because A(1) = 0. Consequently,

sup
H∈[1− 1

2q
+ε,1)

E
∣∣∣d(H, q)−1ZqH,N (t)− ZqH(t)

∣∣∣
2

= A(H0) ≤ CN2q−1−2qH0

where the last inequality has been showed in Proposition 3.1 in [5]. Since H0 ∈ [1− 1
2q +ε, 1),

N2q−1−2qH0 ≤ N−2qε →N→∞ 0. This concludes the proof.

Theorem 4 Assume ZqH is a Hermite process. Then as H → 1, ZqH converges weakly in
C([0, T ]) to the stochastic process (t 1√

q!
Hq(Z))t≥0.

Proof: We will prove the convergence of finite dimensional distributions, since the tight-
ness follows from the relation (21). Consider the linear combinations VN,H,p and VH,p given
by (25) and their characteristic function gN,α(H), gα(H) defined in (26). We can write

lim
H→1

E
(
eiα

∑p
j=1 λjd(H,q)Z

q
H(tj)

)
= lim

H→1
gα(H)

= lim
H→1

lim
N→∞

gN,α(H).

18
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Recall that if fj , j ≥ 1 is a sequence of functions on D ⊂ R converging uniformly to
f on D and if a is a limit point for D, then limj→∞ limx→a fj(x) = limx→a f(x) provided
that limx→a f(x), limx→a fj(x) exist.

Using the uniform convergence from Proposition 2, we have, since ZqH,N converges

in the sense of finite dimensional distributions to [Nt]
N

1√
q!
Hq(Z)

lim
H→1

E
(
eiα

∑p
j=1 λjZ

q
H(tj)

)
= lim

H→1
gα(H) = lim

N→∞
lim
H→1

gN,α(H)

= lim
N→∞

E

(
e
iα
∑p

j=1 λj
[Ntj ]

N
1√
q!
Hq(Z)

)

= E
(
e
iα
∑p

j=1 λjtj
1√
q!
Hq(Z)

)

and this gives the conclusion of the theorem.

4.2.2 Behavior of the Hermite sheet: case d > 1 , q > 2.

In the multiparameter case d > 1, we will use the same idea related to the approximation
of the Hermite sheet by some partial sums, but the situation is more complex and the
limit depends on the number of Hurst parameters that converges to 1. Let us define, for
N = (N (1), .., N (d)) := (N, ..,N) ∈ Zd+,

Zq,dH,N(t) = N−H
[Nt]∑

i=1

Hq

(
NH∆BH

([
i− 1

N
,

i

N

]))
(27)

where Hq is Hermite polynomial of degree q (7), BH = Z1,q
H is the d-parameter fractional

Brownian sheet, ∆ is its high-order increment (5) and

H′ = 1− 1−H

q
. (28)

It has been shown in [13], Proposition 3.5 (see also [15]) that the sequence Zq,dH,N(t)

(27) converges in sense of finite dimensional distributions to d(H, q)Zq,dH with

d(H, q)2 = q!
(H′(2H′ − 1))q

H(2H− 1)
. (29)

Let us start again by explaining the heuristic idea of the proof. Assume first that
H = (H1, ..,Hd)→ (1, .., 1) ∈ Rd. As before we write

lim
H→1

Zq,dH (t) = lim
H→1

lim
N→∞

d(H, q)−1Zq,dH,N(t)

and suppose again that we can switch the two limits. Then

lim
H→1

Zq,dH (t) = lim
N→∞

lim
H→1

d(H, q)−1Zq,dH,N(t).

19



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

By the definition of generalized increments (5), the self-similarity of BH (see (4)) and the
fact that the process BH converges in the sense of finite dimensional distributions to 〈t〉dZ
when H goes to 1, where Z is a standard normal random variable, we will have for every
N ≥ 1

lim
H→1

Zq,dH,N(t) =
1

〈N〉d

[Nt]∑

i=1

1√
q!
Hq(Z) =

〈[Nt]〉d
〈N〉d

1√
q!
Hq(Z)→N 〈t〉d

1√
q!
Hq(Z)

since d(H, q)→H→(1,..,1)∈Rd

√
q!.

A more interesting case is when (Hj1 , ..,Hjk) → (1, .., 1) ∈ Rk (1 ≤ k ≤ d) where
{j1, .., jk} ⊂ {1, 2, .., d} and the parameters Hj , j ∈ {1, 2, .., d} \ {j1, .., jk} are fixed. Recall
the notation Ak,HAk

, tAk
, 〈t〉Ak

from (16). Notice that we have the following convergence
in the sense of finite dimensional distributions

BH′(t)→HAk
→(1,..,1)∈Rk Xt = 〈t〉Ak

B
H′

Ak (tAk
) (30)

and also
d(H, q)→HAk

→(1,..,1)∈Rk d(HAk
, q − k).

In this case, under the same heuristics as in the one dimensional case and by using
the convergence of (27) to the Hermite sheet d(H, q)Zq,dH , we formally get, by assuming that
we can invert the limits over HAk

and over N and via the self-similarity property (4),

lim
(Hj1

,...,Hjk
)→(1,...,1)∈Rk

Zq,dH (t) = lim
N→∞

lim
HAk

→(1,...,1)∈Rk
d(H, q)−1Zq,dH,N(t)

= lim
N→∞

lim
HAk

→(1,...,1)∈Rk
N−Hj1 · · ·N−Hjdd(H, q)−1

[Nt(j1)]∑

i1=1

[Nt(j2)]∑

i2=1

. . .

[Nt(jd)]∑

id=1

Hq

(
∆BH′ ([i− 1, i])

)

= lim
N→∞

lim
HAk

→(1,..,1)∈Rk


 ∏

a∈Ak

N−Ha




∏

b∈Ak

N−Hb




d(H, q)−1
[Nt(j1)]∑

i1=1

[Nt(j2)]∑

i2=1

. . .

[Nt(jd)]∑

id=1

Hq

(
∆BH′([i− 1, i])

)

= lim
N→∞

N−k


∏

b∈Ak

N−Hb


 d(HAk

, q − k)−1
[Nt(j1)]∑

i1=1

[Nt(j2)]∑

i2=1

. . .

[Nt(jd)]∑

id=1

Hq (∆X([i− 1, i]))

with X the d-parameter Gaussian process (30). Notice that

∆X([i− 1, i]) = ∆〈t〉Ak
([i− 1, i])∆B

HAk
tAk

([i− 1, i]) = ∆B
H′

Ak
tAk

([i− 1, i]).
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Therefore

lim
HAk

→(1,..,1)
Zq,dH (t)

= lim
N→∞

N−k


∏

b∈Ak

N−Hb


 [Nt(j1)]...[Nt(jk)]d(HAk

, q − k)−1

∑

b∈Ak

[Nt(b)]∑

ib=1

Hq

(
∆B

HAk
tAk

([i− 1, i])

)

= 〈t〉Ak
Zq,d−kH (t)

where Z
q,(d−k)
H (t) is the (d−k)- parameter Hermite sheet . We used the convergence of (27)

for in the d− k parameter case and the fact that

N−k[Nt(j1)]...[Nt(jk)]→N→∞ 〈t〉Ak
.

As before, we need to make this heuristics rigourous. First we have to noticed that
the partial sum Zq,dH,N(t) can be written as a multiple stochastic integral with respect to
d-parameter Wiener process as follows (see formula (3.15) in [13])

Zq,dH,N(t) = Iq
(
FN(t, ·)

)

where for every t ∈ Rd+

FN(t, ·) = Nq(1−H′)−1
[Nt]∑

i=1

(
hNi
)⊗q

, (31)

and
hNi := NH′L[ i−1

N
, i
N ],H,q

where Lt,H,q is given by (6) and L[ i−1
N
, i
N ],H,q means the high-order increment (5) of Lt,H,q

over
[
i−1
N , i

N

]
. We know from [13], [15] that FN(t, ·) is Cauchy sequence in H⊗q where

H = L2(Rd) converging to Lt,H,q in H⊗q.
We will need to estimate the mean square of the increment Zq,dH,N(t)− Zq,dH (t). For

every t, we have the isometry

E
∣∣∣d(H, q)−1Zq,dH,N(t)− Zq,dH (t)

∣∣∣
2

= E
∣∣Iq
(
d(H, q)−1FN(t, ·)

)
− Iq (Lt,H,q)

∣∣2 (32)

= = q!
∥∥d(H, q)−1FN(t, ·)− Lt,H,q

∥∥2
H⊗q

so we need to estimate
∥∥d(H, q)−1FN(t, ·)− Lt,H,q

∥∥2
H⊗q . This is done below. The proof is

a multidimensional extension of the proof of Proposition 3.1 in [5] combined with the proof
of Proposition 3.3 in [13]. Its proof is postponed to the Appendix.
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Proposition 3 If FN be given by (31) and let Lt,H,q be given by (6). Then for every t ≥ 0

∥∥d(H, q)−1FN(t, ·)− Lt,H,q

∥∥2
H⊗q

= d(H, q)−2Hq(2H− 1)qN2q−2−2qH′
[Nt]∑

i(1)=1

[Nt]∑

i(2)=1

[(∫ 1

0

du

∫ 1

0

dv
∣∣∣u− v + i(1) − i(2)

∣∣∣
−2(1−H′))q

− 2

∫ 1

0

dv

(∫ 1

0

du|i(1) − i(2) + u− v|2H′−2
)q

+

∫ 1

0

du

∫ 1

0

dv
∣∣∣i(1) − i(2) + u− v

∣∣∣
−2q(1−H′)

]
.

Now, for λ1, .., λp ∈ R and t1, .., tp ∈ Rd+, we consider the linear combinations

VN,H,p =

p∑

j=1

λjd(H, q)−1ZqH,N(tj) and VH,p =

p∑

j=1

λjZ
q
H(tj). (33)

Also, let for every u ∈ R

gN,u(H) = E
(
eiuVN,H,p

)
and gu(H) = E

(
eiuVH,p

)
, (34)

the characteristic functions of the d-dimensional random variables VN,H,p and VH,p respec-
tively. We need the uniform convergence of the charactertistic functions in order two invert
the order of the limits (with respect to N( and with respect to the Hurst parameter)).
Recall that H′ = (H ′1, ..,H

′
d) is constructed from H = (H1, ..,Hd) via (28).

Proposition 4 If 1 ≤ k ≤ d, then For every 0 < ε < 1
2q , we have for every u ∈ R

sup
H1,..,Hk∈[ 12+ε,1]

|gN,u(H)− gu(H)| = sup
H′1,..,H

′
k∈[1− 1

2q
+ε,1]k

|gN,u(H)− gu(H)| →N→∞ 0

Proof: Since for every u ∈ R

|gN,u(H)− gu(H)| ≤ |u|E |VN,H,p − VH,p| ≤ |u|
(
E |VN,H,p − VH,p|2

) 1
2
.

Thus, it we need to prove that for every fixed t ≥ 0

sup
H1,..,Hk∈[1− 1

2q
+ε,1]k

E
∣∣∣Zq,dH,N(t)− Zq,dH (t)

∣∣∣
2
→N→∞ 0.

By Proposition 3, we need to show that

sup
H′1,..,H

′
k∈[1− 1

2q
+ε,1]k

A(H′)→N→∞ 0 (35)

where

A(H′) = d(H, q)−2(H′)q(2H′ − 1)qN2q−2−2qH′ ∑

r∈Zd

[(∫ 1

0
du

∫ 1

0
dv |u− v + r|−2(1−H′)

)q
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− 2

∫ 1

0
dv

(∫ 1

0
du|u− v + r|2H′−2

)q
+

∫ 1

0
du

∫ 1

0
dv |u− v + r|−2q(1−H′)

]

From the proof of Proposition 3.1 in [5], we can show that

A(H′) ≤ CN2q−1−2qH′ = CN2q−1−2qH′1 ...N2q−1−2qH′d (36)

if N = (N,N, .., N) ∈ Zd+. Indeed, it follows from (a slightly adaptation of) relations
(3.6), (3.7) and (3.8) in [5] that the term after

∑
r∈Zd above is less that a constant times

|r|2qH′−2q−1 which implies that the series is convergent, since H ′i > 1− 1
2q .

Since the function (H ′1, ..,H
′
k)→ A(H′) is obviously continuous on the compact set

[1− 1
2q + ε, 1]k, there exists a multi-index

H0 = (H0,1, H0,2, ..,H0,k) ∈ [1− 1

2q
+ ε, 1]k

such that
sup

H1,..,Hk∈[1− 1
2q

+ε,1]k
A(H′) = A(H0,1, ..,H0,k, Hk+1, ..,Hd).

Assume k < d. From the inequality (36) (recall that H ′k+1, ...,H
′
d are fixed in

[1− 1
2q + ε, 1) since Hk+1, ..,Hd are fixed in (12 , 1)),

A(H0,1, ..,H0,k, Hk+1, ..,Hd) ≤ CN2q−1−2qH0,1 ...N2q−1−2qH0,kN2q−1−2qHk+1 ....N2q−1−2qHd

≤ CN2q−1−2qHk+1 ....N2q−1−2qHd →N→∞ 0.

If k = d, then (H0,1, H0,2, ..,H0,k) should be different from (1, ..., 1) ∈ Rk since
A(1, 1, ..., 1) = 0. Thus, there exists i0 ∈ {1, 2, ..., d} such that H0,i0 6= 1 and then from
(36), we have

A(H0,1, ..,H0,k, Hk+1, ..,Hd) ≤ CN
2q−1−2H0,i0
i0

→N→∞ 0.

This proves (35) and gives the conclusion of the theorem.

The main result on the behavior of the Hermite sheet when the parameters are near
1 states as follows.

Theorem 5 Let
(
Zq,dH (t)

)
t≥0

be given by (3). Let the notation from Theorem 2 prevail.

1. Assume HAk
→
(
1
2 , ...,

1
2

)
∈ Rk. Assume that the parameters Hj , j ∈ Ak are fixed.

Then the process Zq,dH converges weakly in C([0, T ]d) to the d-parameter stochastic
process (Xt)t≥0 defined by

Xt = 〈t〉Ak
Zq,d−kH (tAk

) (37)

where
(
Zq,d−kH (tAk

)
)
tAk
∈Rd−k

+

is a (d− k)-parameter Hermite process.
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2. Assume (H1, ..,Hd) → (1, .., 1) ∈ Rd. Then the process Zq,dH converges weakly in
C([0, T ]d) to the d-parameter stochastic process (Xt)t≥0 defined by

Xt = 〈t〉d
1√
q!
Hq(Z) (38)

where Z ∼ N(0, 1).

Proof: Tightness follows from (21), so we need to prove the convergence of finite dimen-
sional distributions. Let us recall that the linear combinations VN,H,p and VH,p are given
by (33) and their characteristic function gN,u(H), gu(H) (34). In a similar way to the one
dimensional case, we can write

lim
(Hj1

,...,Hjk
)→(1,...,1)

E
(
eiu

∑p
j=1 λjZ

q,d
H (tj)

)
= lim

(Hj1
,...,Hjk

)→(1,...,1)
gu(H)

= lim
(Hj1

,...,Hjk
)→(1,...,1)

lim
N→∞

gN,u(H).

and the calculations at the beginning of this section will give the conclusion of the theorem,
similarly to the proof of Theorem 4.

Remark 5 Theorem covers also the case q = 2. In this case we retrieve the result from
Theorem 2. If q = 1, then the limit (37) is the Gaussian sheet 〈t〉Ak

Z1,d−k(tAk
).

5 Appendix

Proof of Proposition 3: We can write

‖FN(t, ·)‖2H⊗q = N2q(1−H′)−2
[Nt]∑

i(1)=1

[Nt]∑

i(2)=1

〈
(
hN
i(1)

)⊗q
,
(
hN
i(2)

)⊗q
〉H⊗q

= N2q(1−H′)−2
[Nt]∑

i(1)=1

[Nt]∑

i(2)=1

〈
(
hN
i(1)

)
,
(
hN
i(2)

)
〉qH

=

d∏

j=1

N2q(1−H′j)−2
[Ntj ]∑

k1=1

[Ntj ]∑

k2=1

rH′j (k1 − k2)q ,

where H′ is given by (28) and

rH′j (k1 − k2) = N2H′jE

[
BHj

([
k1 − 1

N
,
k1
N

])
BH′j

([
k2 − 1

N
,
k2
N

])]
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= N2H′jH ′j(2H
′
j − 1)

∫ k1/N

(k1−1)/N

∫ k2/N

(k2−1)/N
|u− v|−2(1−H′j) dudv.

From the above relation,

‖FN(t, ·)‖2H⊗q =
d∏

j=1

(H ′j)
q(2H ′j − 1)qN2q−2

[Ntj ]∑

k1=1

[Ntj ]∑

k2=1

(∫ k1/N

(k1−1)/N

∫ k2/N

(k2−1)/N
|u− v|−2(1−H

′
j) dudv

)q

= (H′)q(2H′ − 1)qN2q−2
[Nt]∑

i(1)=1

[Nt]∑

i(2)=1

(∫ i(1)/N

(i(1)−1)/N

∫ i(2)/N

(i(2)−1)/N
|u− v|−2(1−H

′)
dudv

)q

Now, by letting N goes to infinity, we have, if F (t, ·) = Lt,H,q

‖F (t, ·)‖2H⊗q =
d∏

j=1

(H ′j)
q(2H ′j − 1)q

∫ tj

0

∫ tj

0
|u− v|−2q(1−H′j) dudv

=

d∏

j=1

(H ′j)
q(2H ′j − 1)q

[Ntj ]∑

k1=1

[Ntj ]∑

k2=1

∫ k1/N

(k1−1)/N

∫ k2/N

(k2−1)/N
|u− v|−2q(1−H′j) dudv

= (H′)q(2H′ − 1)q
[Nt]∑

i(1)=1

[Nt]∑

i(2)=1

∫ i(1)/N

(i(1)−1)/N

∫ i(2)/N

(i(2)−1)/N
|u− v|−2q(1−H′) dudv

Now, if φ ∈ H is smooth

〈FN(t, ·), φ⊗q〉H⊗q = Nq(1−H′)−1
[Nt]∑

i(1)=1

〈hN
i(1)
, φ〉qH

=
d∏

j=1

(H ′j)
q(2H ′j − 1)qN q−1

bNtjc∑

k=1

(∫ k/N

(k−1)/N
dv

∫ 1

0
duφ(u)|u− v|2H′j−2

)q
.

By letting again N goes to infinity, we have

〈F (t, ·), φ⊗q〉H⊗q =

d∏

j=1

(H ′j)
q(2H ′j − 1)q

∫ 1

0
dv

(∫ 1

0
duφ(u)|u− v|2H′j−2

)q
.

Therefore, we have

〈F (t, ·), FN(t, ·)〉H⊗q =

d∏

j=1

(H ′j)
q(2H ′j − 1)qN q−1

bNtjc∑

k=1

∫ 1

0
dv

(∫ k/N

(k−1)/N
du|u− v|2H′j−2

)q
.
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=
d∏

j=1

(H ′j)
q(2H ′j − 1)qN q−1

bNtjc∑

k,l=1

∫ l/N

(l−1)/N
dv

(∫ k/N

(k−1)/N
du|u− v|2Hj−2

)q
.

= (H′)q(2H′ − 1)qNq−1
[Nt]∑

i(1)=1

[Nt]∑

i(2)=1

∫ i(2)/N

(i(2)−1)/N
dv

(∫ i(1)/N

(i(1)−1)/N
du|u− v|2H′−2

)q
.

Taking into account all the previous calculations, and by some elementary change
of variables, we have

∥∥FN (t, ·)− F (t, ·)
∥∥2
H⊗q

= (H′)q(2H′ − 1)q
[Nt]∑

i(1)=1

[Nt]∑

i(2)=1

[
N2q−2

(∫ i(1)/N

(i(1)−1)/N

∫ i(2)/N

(i(2)−1)/N
|u− v|−2(1−H

′)
dudv

)q

− 2Nq−1
∫ i(2)/N

(i(2)−1)/N
dv

(∫ i(1)/N

(i(1)−1)/N
du|u− v|2H′−2

)q

+

∫ i(1)/N

(i(1)−1)/N

∫ i(2)/N

(i(2)−1)/N
|u− v|−2q(1−H

′)
dudv

]

= (H′)q(2H′ − 1)qN2q−2−2qH′
[Nt]∑

i(1)=1

[Nt]∑

i(2)=1

[(∫ 1

0

du

∫ 1

0

dv
∣∣∣u− v + i(1) − i(2)

∣∣∣
−2(1−H′))q

− 2

∫ 1

0

dv

(∫ 1

0

du|i(1) − i(2) + u− v|2H′−2
)q

+

∫ 1

0

du

∫ 1

0

dv
∣∣∣i(1) − i(2) + u− v

∣∣∣
−2q(1−H′)

]

and with this, the result is achieved.
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