期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:118
Estimation of the volatility persistence in a discretely observed diffusion model
Article
Rosenbaum, Mathieu1,2 
[1] CREST ENSAE, F-92245 Malakoff, France
[2] Univ Paris Est, Lab Anal & Math Appl, UMR CNRS 8050, Paris, France
关键词: stochastic volatility models;    discrete sampling;    high frequency data;    fractional Brownian motion;    scaling exponent;    adaptive estimation of quadratic functionals;    wavelet methods;   
DOI  :  10.1016/j.spa.2007.09.004
来源: Elsevier
PDF
【 摘 要 】

We consider the stochastic volatility model dY(t) = sigma(t) dB(t), with B a Brownian motion and a of the form sigma(t) = Phi(integral(t)(0) a(t, u)dW(u)(H) + f (t)xi(0)), where W-H is a fractional Brownian motion, independent of the driving Brownian motion B, with Hurst parameter H >= 1/2. This model allows for persistence in the volatility sigma. The parameter of interest is H. The functions Phi, a and f are treated as nuisance parameters and xi(0) is a random initial condition. For a fixed objective time T, we construct from discrete data Y-i/n, i = 0,..., nT, a wavelet based estimator of H, inspired by adaptive estimation of quadratic functionals. We show that the accuracy of our estimator is n(-1/(4H+2)) and that this rate is optimal in a minimax sense. (C) 2007 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2007_09_004.pdf 550KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次