期刊论文详细信息
STOCHASTIC PROCESSES AND THEIR APPLICATIONS 卷:113
Stochastic volatility and fractional Brownian motion
Article
Gloter, A ; Hoffmann, M
关键词: stochastic volatility models;    discrete samplings;    high-frequency data;    fractional Brownian motion;    contrast estimators;   
DOI  :  10.1016/j.spa.2004.03.008
来源: Elsevier
PDF
【 摘 要 】

We observe (Y-1) at times i/n, i = 0,..., n, in the parametric stochastic volatility model d Y-t = Phi(theta,W-t(H)) dW(t), where (W-t) is a Brownian motion, independent of the fractional Brownian motion (W-t(H)) with Hurst parameter H greater than or equal to 1/2. The sample size n increases not because of a longer observation period, but rather, because of more frequent observations. We prove that the unusual rate n(-1/(4H+2)) is asymptotically optimal for estimating the one-dimensional parameter theta, and we construct a contrast estimator based on an approximation of a suitably normalized quadratic variation that achieves the optimal rate. (C) 2004 Elsevier B.V. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_spa_2004_03_008.pdf 405KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次