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Abstract

We consider the stochastic volatility model

dYt = σt dBt ,

with B a Brownian motion and σ of the form

σt = Φ

(∫ t

0
a(t, u)dW H

u + f (t)ξ0

)
,

where W H is a fractional Brownian motion, independent of the driving Brownian motion B, with Hurst
parameter H ≥ 1/2. This model allows for persistence in the volatility σ . The parameter of interest is H .
The functions Φ, a and f are treated as nuisance parameters and ξ0 is a random initial condition. For a
fixed objective time T , we construct from discrete data Yi/n, i = 0, . . . , nT , a wavelet based estimator of
H , inspired by adaptive estimation of quadratic functionals. We show that the accuracy of our estimator is
n−1/(4H+2) and that this rate is optimal in a minimax sense.
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1. Introduction

1.1. Stochastic volatility and volatility persistence

Since the celebrated model of Black and Scholes, the behavior of financial assets is often
modelled by processes of type

dSt = µt dt + σt dBt ,

where S is the price (or the log-price) of the asset, B a Brownian motion and µ a drift
process. The volatility coefficient σ represents the fluctuations of S and plays a crucial role
in trading, option pricing and hedging. It is well known that stochastic volatility models,
where the volatility is a random process, provide a way to deal with the endemic time-varying
volatility and to reproduce various stylized facts observed on the markets; see Shephard [34],
Barndorff-Nielsen, Nicolato and Shephard [3]. Among these stylized facts, there are many
arguments about volatility persistence. This presence of memory in the volatility has in particular
consequences for option pricing; see Ohanissian, Russel and Tsay [32], Taylor [35], Comte,
Coutin and Renault [11]. Hence, continuous time dynamics have been introduced to capture
this phenomenon; see Comte and Renault [12], Comte, Coutin and Renault [11] or Barndorff-
Nielsen and Shephard [4]. However, in statistical finance, the question of the volatility persistence
has been mostly treated with discrete time models; see among others Breidt, Crato and De
Lima [6], Harvey [18], Andersen and Bollerslev [1], Robinson [33], Hurvich and Soulier [22],
Teyssière [36]. Concurrently, statistical methods for detecting this volatility persistence have
been specifically developed for these models; see Hurvich, Moulines and Soulier [20], Deo,
Hurvich and Lu [14], Hurvich and Ray [21], Lee [26], Jensen [24]. In this paper, our objective
is to build, for continuous time models, a statistical program allowing us to recover information
about the volatility persistence.

1.2. A diffusion model with fractional stochastic volatility

We consider a class of diffusion models whose volatility is a non-linear transformation of a
stochastic integral with respect to fractional Brownian motion. Recall that a fractional Brownian
motion (W H

t , t ∈ R), with Hurst parameter H ∈ (0, 1], is a self-similar centered Gaussian
process with covariance function

E[W H
t W H

s ] =
1
2
(|s|2H

+ |t |2H
− |t − s|2H ).

If H > 1/2, the use of fractional Brownian motion (fbm for short) is a way to allow for
persistence. Indeed, its increments are then stationary, positively correlated and the value of the
Hurst parameter quantifies the presence of so-called long memory between them; see Mandelbrot
and Van Ness [27], Taqqu [15]. We define on a rich enough probability space (Ω ,A,P) a
Brownian motion B, a fractional Brownian motion W H , independent of B, with unknown Hurst
parameter H ∈ (1/2, 1), and a random variable ξ0, measurable with respect to the sigma algebra
generated by (W H

t , t ≤ 0). We fix an objective time T > 0 and we consider the one-dimensional
stochastic process Y defined by

Yt = y0 +

∫ t

0
σs dBs, y0 ∈ R, t ∈ [0, T ], (1)
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where y0 is deterministic and σ is another one-dimensional stochastic process of the form

σt = Φ
(∫ t

0
a(t, u)dW H

u + f (t)ξ0

)
. (2)

The functions Φ, a and f are deterministic and unknown. Since we only consider
continuously differentiable integrands, the stochastic integral with respect to the fractional
Brownian motion W H with H ∈ (1/2, 1) is simply defined as a pathwise Riemann–Stieltjes
integral. In particular, this definition gives that for a continuously differentiable real function g,∫ t

0
g(u)dW H

u = −

∫ t

0
g′(u)W H

u du + g(t)W H
t .

This framework is an extension of the long memory stochastic volatility model introduced in
mathematical finance by Comte and Renault [12]. We retrieve the volatility function used by
Comte and Renault in [12] taking

Φ(x) = exp(x), a(t, u) = γ exp(−k[t − u]), ξ0 = 0,

where k and γ are positive constant parameters. Its stationary version, that is the exponential of
a long memory fractional Ornstein–Uhlenbeck process, is obtained taking the same specification
for Φ and a and

f (t) = γ exp(−kt), ξ0 =

∫ 0

−∞

exp(ku)dW H
u ;

see Cheridito et al. [7] for details. For the preceding specification of the volatility process, Comte
and Renault have shown in [12] that Cov[σt+h, σt ] is of order |h|

−(1−2d) as h tends to infinity,
with d = H − 1/2. Hence, not only the logarithm of the volatility but also the volatility process
itself entails long memory with long memory parameter d = H − 1/2.1

Remark also that in the limit case H = 1/2, under smoothness assumptions on Φ, letting

a = 1, f = 0, g = (Φ2)′ ◦ Φ−1 and h = (Φ2)′′ ◦ Φ−1,

we equivalently have

dσ 2
t = h(σ 2

t )dt + g(σ 2
t )dWt .

Thus, we (partially) retrieve the standard stochastic volatility diffusion framework; see for
example Hull and White [19], Melino and Turnbull [28] or Musiela and Rutkowski [29] for a
more exhaustive study.

For I ⊆ R, we denote by Ck(I ) the set of all deterministic k-times-differentiable functions
from I to R. The assumptions on a, Φ, f and ξ0 in model (1) and (2) are the following.

Assumption A. (i) For all t ∈ [0, T ], u → a(t, u) ∈ C2([0, T ]), with bounded derivative
uniformly in t .

(ii) For all u ∈ [0, T ], t → a(t, u) ∈ C2([0, T ]), with bounded derivatives uniformly in u.

1 Note that if {X t , t ∈ Z} is a stationary long memory Gaussian process, the statement that Φ(X t ) is also a long
memory process with the same memory parameter is not always true. This is the case provided the linear term in the
Hermite expansion of Φ(X t ) does not vanish. In every instance, a non-linear transform Φ(X t ) cannot “increase” the
memory of X t .
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(iii) t → f (t) ∈ C2([0, T ]).
(iv) For p > 0, E[ep|ξ0|] < ∞.
(v) There exist 0 ≤ β1 < β2 ≤ T such that infu∈[β1,β2] a2(u, u) > 0.

Assumption B. (i) x → Φ(x) ∈ C2(R).
(ii) For some c1 > 0, c2 > 0 and γ ≥ 0, |(Φ2)′(x)| ≥ c1|x |

γ 1|x |∈[0,1] + c21|x |>1.
(iii) For some c3 > 0, |(Φ2)′′(x)| ≤ c3e|x |.

1.3. Statistical model and results

We consider model (1) and (2). For technical convenience (see Section 2.1.2), we take T ≥ 3.
We observe the diffusion at the sampling frequency n. This means that we observe

Y n
= {Yi/n, i = 0, . . . , nT }.

For simplicity, we assume throughout the paper n = 2N . We study the problem of the inference
of H based on Y n .

A rate vn → 0 is said to be achievable over H ⊂ (1/2, 1) if there exists an estimator
Ĥn = Ĥn(Y n) such that the normalized error

{v−1
n (Ĥn − H)}n≥1 (3)

is bounded in probability, uniformly overH. The rate vn is moreover a lower rate of convergence
on H if there exists C > 0 such that

lim inf
n→∞

inf
F

sup
H∈H

P[v−1
n |F − H | ≥ C] > 0, (4)

where the infimum is taken over all estimators F = F(Y n). We prove in this paper that the
rate vn(H) = n−1/(4H+2) is optimal in a minimax sense. This means that (3) and (4) agree
with vn = vn(H). We also exhibit an optimal estimator based on the behavior of the wavelet
coefficients of the process σ 2.

Theorem 1. Under Assumptions A and B, the rate vn(H) = n−1/(4H+2) is achievable over
every compact setH ⊂ (1/2, 1). Moreover, the estimator Ĥn explicitly constructed in Section 2.2
achieves the rate vn(H).

Our next result shows that, under an additional restriction on the non-degeneracy of the model
and on the initial condition, this result is indeed optimal.

Assumption C. The variable ξ0 is deterministic. Moreover, for some c4 > 0, c5 > 0, c4 6= c5
and c6 > 0, we have c4 ≤ |Φ(x)| ≤ c5 and |Φ′(x)| ≤ c6.

Theorem 2. Under Assumptions A–C, the rate vn(H) = n−1/(4H+2) is a lower rate of
convergence over every compact set H ⊂ (1/2, 1) with non-empty interior.

1.4. Discussion

• Contrary to other works, ours does not consider intrinsically discrete data, but considers
discretely observed data from an underlying continuous time process. Thus, as the objective time
T is fixed, the dynamic between two data depends on the sampling frequency. This approach
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substantially differs from those based on ergodic properties. In our context, the available
information quantity does not increase because of a longer observation period but because
of a higher sampling frequency. The estimation rates are naturally different according to the
approaches. Compare our accuracy with the rate n−(2/5−ε) obtained by Hurvich, Moulines and
Soulier in an ergodic context; see [20].
• Through this model, we aim at showing that we can recover the smoothness of the volatility
from historical data. The following proposition, whose proof is given in Appendix, shows that
the Hurst parameter can be interpreted as a regularity parameter thanks to Besov smoothness
spaces (see the Appendix).

Proposition 1 (Smoothness of the Volatility Process). For large enough T , under Assumptions A
and B, in model (1) and (2),

(i) Almost surely, the trajectory of t → σ 2
t belongs to the Besov space BH

2,∞([0, T ]) but, for all

q < ∞, a.s. it does not belong to BH
2,q([0, T ]).

(ii) For all s < H, almost surely, the trajectory of t → σ 2
t belongs to the Besov space

Bs
∞,∞([0, T ]) but, if moreover there exists c > 0 such that |(Φ2)′(x)| > c, then a.s. it

does not belong to BH
∞,∞([0, T ]).

• With the point of view of the estimation of the local Hölder index of a process (in our case, this
is equal to the parameter H ), Theorem 1 remains true in a slightly more general setting. Consider
the model

Yt = y0 +

∫ t

0
σs dBs, y0 ∈ R, t ∈ [0, T ], (5)

with σt = Φ(Z t ). Here Φ verifies Assumption B and (Z t , t ∈ [0, T ]) is a continuous time
process such that for all (s, t) ∈ [0, 1]

2, s ≤ t ,

Z t − Zs = a(s)(Z ′
t − Z ′

s)+ (t − s) f (s)+ h(t, s)+ [v(t)− v(s)]ξ0

where

– a ∈ C1([0, T ]) and there exist 0 ≤ β1 < β2 ≤ T such that infu∈[β1,β2] a2(u) > 0 and
P[∀u ∈ [β1, β2], Z2

u = 0] = 0.
– (Z ′

t , t ∈ [0, T ]) is a centered Gaussian process, independent of B, such that Z ′

0 = 0 and for
all t ≥ 0 and h > 0,

E[(Z ′

t+h − Z ′
t )

2
] = E[Z ′2

h ] and E[Z ′2
h ] = h2H (1 + g(h)h1/2),

with H ∈ (1/2, 1) and g ∈ C4([0, T ]).
– f : [0, T ] → R is a random function such that for p > 0,

sup
s∈[0,T ]

E[| f (s)|p
] < ∞.

– h : [0, T ]
2

→ R is a random function such that for p > 0 and (t, s) ∈ [0, T ]
2,

E[|h(t, s)|p
] ≤ cp(t − s)3p/2 and E

[
sup

t∈[0,T ]

ep|h(t,0)|

]
< ∞.

– v ∈ C2([0, T ]).
– ξ0 is a random variable, independent of B, such that for p > 0, E[ep|ξ0|] < ∞.
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This general setting includes various Gaussian processes with stationary increments and local
Hölder index equal to H ; see for example Istas and Lang [23]. The following proposition enables
us to work in the general setting of model (5) for the proof Theorem 1.

Theorem 3 (General Formalism for Theorem 1).
(i) The formalism of model (5) includes model (1) and (2).

(ii) In model (5), Theorem 1 holds for the estimation of the parameter H.

Hence, we only prove Theorems 2 and 3.
• The accuracy vn(H) is slower by a polynomial order than the usual n−1/2 of regular parametric
models. This rate of convergence seems to be characteristic of high frequency parametric
inference from noisy data in the presence of fractional Brownian motion. Indeed, this rate is also
found by Gloter and Hoffmann [16] in the high frequency inference of the finite dimensional
parameter θ in the model

dYt = σt dBt , σt = Φ(θ,W H
t ) (6)

and in the high frequency estimation of the Hurst parameter in the model

Y n
i = σW H

i/n + a(W H
i/n)ξ

n
i , (7)

where a is an unknown function and ξn
i a centered white noise; see [17]. In a sense, our approach

is a generalization of both (6) and (7) for the estimation of the parameter H .
• In practice, a usual way to estimate the regularity, or the long memory parameter, of the
volatility of an asset is to build a volatility proxy2 from the prices, and then to use classical
method for regularity estimation or long memory detection. Although linked with the preceding
practice, the method we give in this paper is mathematically rigorous, and in some sense optimal.
The optimal rates of convergence are quite slow, but not catastrophic. Hence, our result shows that
getting accurate enough information about the smoothness of the volatility process is possible,
but compulsorily requires a large amount of data. This is not surprising. Indeed, the volatility is
not observed and any pointwise approximation of it is very noisy. For an illustration of this, see
the numerical results in the Appendix.

1.5. Organization of the paper

In Section 2, we present our estimation method for the volatility Hurst parameter. Section 3
states the main propositions which lead to Theorems 3 and 2. The proof of Theorem 3(i) is given
in Section 4. We prove in Sections 5–7 the results stated in Section 3 concerning the upper bound
whereas Theorem 3(ii) is proved in Section 8. We end with the proof of Theorem 2 in Section 9.
The proof of Proposition 1 and one numerical illustration are given in the Appendix.

2. Estimation strategy

2.1. Estimation of the Hurst parameter: Preliminaries

2.1.1. Estimation of H from direct observation of a fractional Brownian motion
Imagine that we observe high frequency data

{σW H
i/n, i = 0, . . . , n},

2 Such proxies are often based on the absolute or quadratic variation of the log prices, with sampling period higher
than 10 min to avoid microstructure noise effects.
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where σ is an unknown constant and W H
t a fractional Brownian motion. Then, we can recover

the Hurst parameter at the parametric rate n−1/2. Indeed, we can use as follows local properties
of the trajectory of the fractional Brownian motion; see Istas and Lang [23], and see also Berzin
and Leon [5], Lang and Roueff [25]. Let s = (s0, . . . , sp) ∈ Rp+1 be such that

for k = 0, . . . , p − 1 :

p∑
i=0

si i
k

= 0 and
p∑

i=0

si i
p

6= 0.

The integer p = m(s) is called the order of the difference. For instance, the usual difference
s = (−1, 1) is of order 1 and s = (1,−2, 1) is of order 2. For such a sequence s and
i = 0, . . . , n − m(s)− 1, we define for a function f : [0, 1] → R, the generalized difference

∆i,n f =

m(s)∑
j=0

s j f

(
i + j

n

)
.

Consider

Vn(H) =

n−m(s)−1∑
i=0

(∆i,nW H )2.

Istas and Lang [23] show that for m(s) > 1, there exists a constant Ls,H > 0 such that3

n2H−1Vn(H) = Ls,H +
1

√
n
ξn,

with ξn bounded in probability. Then, an estimator achieving the rate n−1/2 is for example4

Ĥ =
1
2

(
1 + log2

Vbn/2c(H)

Vn(H)

)
.

Note that beyond fractional Brownian motion, the problem of estimating the local Hölder index
of a process has been heavily studied in the Gaussian context; see in particular Istas and Lang [23]
and Lang and Roueff [25].

2.1.2. Estimation of H from noisy observation of a fractional Brownian motion
Consider now model (7). Recovering the Hurst parameter in this context of noisy data is more

difficult. Indeed, Gloter and Hoffmann show in [17] that the statistical structure of model (7) is
significantly modified by the noise. They prove that the rate n−1/(4H+2) is optimal for estimating
H in the minimax sense of (3) and (4). Their estimation strategy is based on the behavior of
the energy levels of the fractional Brownian motion that reflects the Besov properties of the
trajectories. Pick a mother wavelet ψ with 2 vanishing moments. Hence, the wavelet support has
a minimal length of 3; see Daubechies [13]. For j and k positive integers, let

ψ jk(x) = 2 j/2ψ(2 j x − k), d jk =

∫
ψ jk W H

s ds and Q j =

∑
k

d2
jk .

3 The condition m(s) > 1 is necessary for H > 3
4 ; if H ≤

3
4 , one can take m(s) = 1.

4 Note that if σ is known, an estimator with accuracy n−1/2(log n)−1 can be built; see Cœurjolly [9].
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The sequence of energy levels (Q j , j ≥ 0) has the following scaling property5:

Q j+1

Q j
= 2−2H

+ o(1) as j → +∞. (8)

Gloter and Hoffmann [17] construct estimators d̂2
jk of the d2

jk up to a maximal resolution level

Jn = b
1
2 log2(n)c. Setting

Q̂ j =

∑
k

d̂2
jk, (9)

one obtains a sequence of estimators:

Ĥ j,n = −
1
2

log2
Q̂ j+1,n

Q̂ j,n
, j = 1, . . . , Jn . (10)

The final estimator is ĤJ∗
n ,n where the optimal resolution level J ∗

n is defined following the rules
of adaptive estimation of quadratic functionals,

J ∗
n = max

{
j = 1, . . . , Jn, Q̂ j,n ≥

2 j

n

}
. (11)

We adapt the preceding strategy in this paper.

2.2. Construction of an estimator

We build in this section our estimator in the general setting of model (5).

2.2.1. An Euler scheme-type transformation
By an Euler scheme-type transformation, we boil the problem down to a regression model.

Indeed, we have

zn
i = n(Y(i+1)/n − Yi/n)

2
= σ 2

i/n + ξn
i , (12)

with

ξn
i = n

∫ i+1
n

i
n

(σ 2
t − σ 2

i/n)dt +

(∫ i+1
n

i
n

σt dBt

)2

−

∫ i+1
n

i
n

σ 2
t dt

 .
Conditional on the fbm W H and up to negligible terms, the ξn

i are martingale increments with
variance of order 1.

2.2.2. Estimation of the energy levels
Let ψ be a mother wavelet with two vanishing moments and support [0, T ]. Let

d jk =

∫ k+T
2 j

k
2 j

σ 2
t ψ jk(t)dt and Q j =

∑
k

d2
jk .

5 For the moment, we do not specify the meaning of o(·).
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By proving a scaling-type property on the energy levels analogous to (8), we can follow the
strategy of Section 2.1.2. The main difficulty lies here in the non-linearity introduced by the
function Φ2. We now present the estimation of the energy levels. To get rid of boundary effects,
without any loss of generality in our asymptotic framework, we do not take into account the
wavelets ψ jk whose support is not totally included in [0, T ]. We have

d jk =

T 2N− j
−1∑

l=0

∫ k
2 j +

l+1
2N

k
2 j +

l
2N

σ 2
t ψ jk(t)dt.

A first natural estimator of d jk is

d̃ jk =

T 2N− j
−1∑

l=0

zn
k2N− j +l

∫ k
2 j +

l+1
2N

k
2 j +

l
2N

ψ jk(t)dt.

Let

Mk,l,t =

(∫ t

k
2 j +

l
2N

σudBu

)2

−

∫ t

k
2 j +

l
2N

σ 2
u du.

From (12), we have the following decomposition:

d̃ jk − d jk = b jk + e jk + f jk,

with

b jk =

T 2N− j
−1∑

l=0

∫ k
2 j +

l+1
2N

k
2 j +

l
2N

ψ jk(t)(σ
2
k2− j +l2−N − σ 2

t )dt,

e jk = n
T 2N− j

−1∑
l=0

∫ k
2 j +

l+1
2N

k
2 j +

l
2N

ψ jk(t)dt Mk,l, k
2 j +

l+1
2N
,

f jk = n
T 2N− j

−1∑
l=0

∫ k
2 j +

l+1
2N

k
2 j +

l
2N

ψ jk(t)dt
∫ k

2 j +
l+1
2N

k
2 j +

l
2N

(σ 2
t − σ 2

k2− j +l2−N )dt.

In order to estimate d2
jk accurately enough, we cannot use d̃ jk

2
because the remaining term e2

jk
has to be compensated. The other terms are negligible.

Conditional on W H , (Mk,l,t , t ≥ 0) is a continuous local martingale. Let Ẽ denote the
expectation conditional on the path of the volatility. Then, by the independence of the Brownian
increments,

Ẽ[e2
jk] = n2

T 2N− j
−1∑

l=0

(∫ k
2 j +

l+1
2N

k
2 j +

l
2N

ψ jk(t)dt

)2

Ẽ[M2
k,l, k

2 j +
l+1
2N

].

Let

Nk,l,t =

∫ t

k
2 j +

l
2N

σudBu .
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By Ito’s formula,

Mk,l,t = 2
∫ t

0
σu Nu1{u≥

k
2 j +

l
2N }

dBu .

Let

a2
j,k,l = Ẽ[M2

k,l, k
2 j +

l+1
2N

] = 2
(
Ẽ
[
(Yk2− j +(l+1)2−N − Yk2− j +l2−N )

2
])2

.

We need to compensate a2
j,k,l , so we estimate it by

â2
j,k,l =

( √
2

h(n)

h(n)∑
p=0

(Yk2− j +(l+1+p)2−N − Yk2− j +(l+p)2−N )
2

)2

,

where h(n) = bn1/2
c. Let

ν jk = n2
T 2N− j

−1∑
l=0

(∫ k
2 j +

l+1
2N

k
2 j +

l
2N

ψ jk(t)dt

)2

a2
j,k,l ,

ν̄ jk = n2
T 2N− j

−1∑
l=0

(∫ k
2 j +

l+1
2N

k
2 j +

l
2N

ψ jk(t)dt

)2

â2
j,k,l .

Finally we define

d̂2
jk = d̃ jk

2
− ν̄ jk and Q̂ j =

∑
k

d̂2
jk .

We thus obtain our estimator ĤJ∗
n ,n of H with the same specifications as in (10) and (11).

3. The behavior of the energy levels

We present here the steps that enable us to prove Theorem 3(ii) and Theorem 2.

3.1. Upper bound

We work in the general setting of model (5). Let

d jk =

∫
σ 2

t ψ jk(t)dt and Q j =

∑
k

d2
jk .

We write c for a constant depending on Φ, a, f , v, H , ψ and continuous in its arguments.

Proposition 2 (Limit of the Energy Levels). In model (5), there exists a constant c(ψ) > 0,
depending on ψ and H, continuous in its arguments, and where c > 0 such that

E
[∣∣∣∣22 j H Q j − c(ψ)

∫ T

0
a(u)2{(Φ2)′(Zu)}

2du

∣∣∣∣] ≤ c2− j/2.

More precisely, Proposition 2 enables us to obtain the following result.
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Proposition 3 (Scaling Property). In model (5), we have

(i) for all ε > 0, there exist j0 and r > 0 such that for all j ≥ j0,

P[22 j H Q j ≥ r ] ≥ 1 − ε,

(ii) for all ε > 0, there exist j0 and M > 0 such that for all j ≥ j0,

P

[
2 j/2 sup

l≥ j

∣∣∣∣Ql+1

Ql
− 2−2H

∣∣∣∣ ≥ M

]
≤ ε.

Finally, we have the following result for the estimator.

Proposition 4 (Deviation of the Estimator). Let jn(H) = b(2H + 1)−1 log2(n)c and H be a
compact set included in (1/2, 1). In model (5), for all H ∈ H, Jn ≥ jn(H) and for any L > 0,
the sequence{

n2 jn(H)/2 sup
Jn≥ j≥ jn(H)−L

2− j
|Q̂ j,n − Q j |

}
is bounded in probability, uniformly over H.

We then prove in Section 8 that Propositions 3 and 4 together imply Theorem 3(i).

3.2. Lower bound

For the lower bound, we work in model (1) and (2). Let Pn
f denote the law of the data

Y n
= {Yi/n, i = 0, . . . , nT } conditional on W H

= f . The key point of the lower bound is
the following.

Proposition 5 (Distance in Total Variation). Under Assumptions A–C, there exists c > 0 such
that

‖Pn
f − Pn

g‖
2
TV ≤ cn‖ f − g‖

2
2,

where ‖ · ‖TV denotes the distance in total variation and ‖ · ‖2 the usual L2 norm of functions on
[0, T ] with respect to the Lebesgue measure.

Proposition 5 together with Proposition 5 of Gloter and Hoffmann [17] implies the lower
bound.

4. Proof of Theorem 3(i)

We show here than we can prove Theorem 1 under the general formalism of model (5).

4.1. Notation

In all the proofs, we repeatedly use the notation c for constants depending on H , ψ and the
functions defined in model (1) and (2) or model (5), continuous in their arguments, and that may
vary from line to line. We write the symbol = also for almost sure equality and for a function g,
we set ‖g‖∞ = supt |g(t)|. Finally, ∂ j

i f (u, t) denotes the j-th derivative of f with respect its
i-th variable.
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4.2. Proof of Theorem 3(i)

For s ≤ t∫ t

0
a(t, u)dW H

u −

∫ s

0
a(s, u)dW H

u

is equal to a(s, s)(W H
t − W H

s )+ (t − s) f (s)+ h(t, s) with

f (s) =

∫ s

0
∂1a(s, u)dW H

u ,

and

h(t, s) =
(t − s)2

2

∫ s

0
∂2

1 a(θ1[t, s], u)dW H
u + R(t, s),

where

R(t, s) =

∫ t

s
[a(t, u)− a(s, u)]dW H

u +

∫ t

s
[a(s, u)− a(s, s)]dW H

u

= (t − s)
∫ t

s
∂1a(θ2[t, s], u)dW H

u +

∫ t

s
(u − s)∂2a(s, θ3[u, s])dW H

u .

Here θ1, θ2 and θ3 are deterministic functions with values in [0, T ]. Using Assumption A, we
get that all the preceding integrands are deterministic, continuously differentiable with respect
to the variable u and uniformly bounded with respect to all variables. Hence, in our case, the
Riemann–Stieltjes integral with respect to the fbm coincides almost surely with the Wiener
integral with respect to the fbm. Consequently, for f ∈ C1([0, T ]) and g ∈ C1([0, T ]),

E
[∫ T

0
f (u)dW H

u

∫ T

0
g(u)dW H

u

]
= H(2H − 1)

∫ T

0

∫ T

0
f (s)g(t)|s − t |2H−2dsdt; (13)

see for example Norros et al. [30]. Hence, using the fact that the preceding stochastic integrals
are Gaussian variables together with Assumption A, we easily get that for (t, s) ∈ [0, T ]

2, s ≤ t
and p > 0

E

[∣∣∣∣ (t − s)2

2

∫ s

0
∂2

1 a(θ1[t, s], u)dW H
u + R(t, s)

∣∣∣∣p]
≤ cp(t − s)p(1+H).

For p > 0 and t > 0, let

Vt =

∫ t

0
[a(t, u)− a(0, 0)] dW H

u , Ṽ = sup
t∈[0,T ]

|pVt | and ν = sup
t∈[0,T ]

E[(pVt )
2
].

We now prove that E[eṼ
] < ∞. The process (pVt , t ≥ 0) is a Gaussian process starting from

0 with continuous trajectories, so we can use Dudley’s entropy bound. There exists a universal
constant c such that

E[Ṽ ] ≤ c
∫ d(0,T )

0

√
log N (T, d, ε)dε,

where d2(s, t) = p2E[|Vt − Vs |
2
] and N (T, d, ε) is the minimal number of balls of radius ε

needed to recover [0, T ]. Since
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E[|Vt − Vs |
2
] ≤ c|t − s|2H ,

we easily obtain that N (T, d, ε) is less than cT ε−1/H . Hence, we get E[Ṽ ] < ∞. We now use
Borell’s inequality: For λ > E[Ṽ ],

P[Ṽ ≥ λ] ≤ 2e−
1
2 (λ−E[Ṽ ])2/ν .

As

E[eṼ
] =

∫
+∞

0
P[eṼ

≥ λ]dλ,

we get

E[eṼ
] ≤ c + 2

∫
+∞

eE[Ṽ ]

e−
1
2 (log λ−E[Ṽ ])2/νdλ ≤ c + 2

∫
+∞

0
eE[Ṽ ]+u−u2/2νdu.

Finally, suppose that on [β1, β2],

t →

∫ t

0
a(t, u)dW H

u + f (t)ξ0

is equal to zero with positive probability. This implies that t →
∫ t

0 a(t, u)dW H
u belongs to

C1([β1, β2]) with positive probability. This is absurd; see the proof of Proposition 1 in the
Appendix.

5. Proof of Proposition 2

From now, and until the end of the proof of Theorem 3(ii), we work in model (5).

5.1. Technical lemmas

We establish here several useful lemmas. We apply here ideas of Gloter and Hoffmann [16],
initially developed for generalized differences. We first prove two lemmas on the expectation and
covariance of the wavelet coefficients for the stochastic integral. Let

β jk =

∫ T

0
Z tψ jk(t)dt, β ′

jk =

∫ T

0
Z ′

tψ jk(t)dt, F(t) =

∫ t

0
ψ(u)du.

We have the following lemma.

Lemma 1. For all positive integers j, k,

β jk = a(k2− j )β ′

jk + 2−2 j R jk,

and

E[β
′2
jk] = 2− j (1+2H)

{c(ψ)+ 2− j/2 R′

jk},

with

c(ψ) = E

[(∫ T

0
F(t)dW H

t

)2]
> 0,

where (W H
t , t ≥ 0) is a fractional Brownian motion and E[|R jk |

p
+ |R′

jk |
p
] ≤ cp for p > 0.
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Proof. The coefficient β jk is equal to

2− j/2
∫ T

0
ψ(v)Z(k+v)2− j dv.

The two vanishing moments of the wavelet easily give the first assertion of the lemma.
Using that

2Z ′

(k+u)2− j Z ′

(k+v)2− j = Z
′2
(k+u)2− j + Z

′2
(k+v)2− j − (Z ′

(k+u)2− j − Z ′

(k+v)2− j )
2, (14)

together with the vanishing moments of the wavelet, we get that E[β
′2
jk] is equal to

−2−( j+1)
∫ T

0

∫ T

0
ψ(u)ψ(v)2− j2H

|u − v|2H dudv

−2−( j+1)
∫ T

0

∫ T

0
ψ(u)ψ(v)2− j (2H+1/2)

|u − v|2H+1/2g(|u − v|2− j ).

Hence,

E[β
′2
jk] = −2−( j+1)

∫ T

0

∫ T

0
ψ(u)ψ(v)2− j2H

|u − v|2H dudv + 2− j (3/2+2H)R′

jk,

with |R′

jk | ≤ c. Then we easily show that

−

∫ T

0

∫ T

0
ψ(u)ψ(v)|u − v|2H dudv

= 2H(2H − 1)
∫ T

0

∫ T

0
F(u)F(v)|u − v|2H−2dudv.

We conclude using (13). �

Lemma 2 (Decorrelation of the Wavelet Coefficients). There exists c such that, for all j, k, k′,

|E[β ′

jkβ
′

jk′ ]| ≤ 2− j (1+2H)c(1 + |k − k′
|)2H−4.

Proof. For k ≥ k′
+ T + 1, let mk,k′,u,v = 2− j (k − k′

+ u − v). We have

E[β ′

jkβ
′

jk′ ] = 2− j
∫ T

0

∫ T

0
ψ(u)ψ(v)E[Z ′

(k+u)2− j Z ′

(k′+v)2− j ]dudv

= −2−( j+1)
∫ T

0

∫ T

0
ψ(u)ψ(v)E[Z

′2
(k−k′+u−v)2− j ]dudv

= −2−( j+1)
∫ T

0

∫ T

0
ψ(u)ψ(v)|mk,k′,u,v|

2H

− 2−( j+1)
∫ T

0

∫ T

0
ψ(u)ψ(v)g(mk,k′,u,v)|mk,k′,u,v|

2H+1/2dudv.

For the first term, we make a fourth-order Taylor expansion of x → (x + u − v)2H around point
k − k′. Thanks to the two vanishing moments of the wavelet, we get that the first term is less than
c2− j (1+2H)(|k−k′

|−T )2H−4. For the second term, we first make a fourth-order Taylor expansion
of g around point (k −k′)2− j . The result follows thanks to expansions of x → (x +u −v)2H+1/2

up to order 4, 3, 2 and 1. �
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Lemma 3. Let ξ : [0, T ] → R be a deterministic bounded function. Define

Σ j (ξ) = 2 j
T (2 j

−1)∑
k=0

{2 j2Hβ2
jk − c(ψ)2− j a(k2− j )2}ξk2− j . (15)

Then,

E[Σ j (ξ)
2
] ≤ c‖ξ‖2

∞2 j .

Proof. We have

Σ j (ξ) = 2 j
T (2 j

−1)∑
k=0

2 j2H a(k2− j )2(β
′2
jk − E[β

′2
jk])ξk2− j

+ 2 j
T (2 j

−1)∑
k=0

2 j2H (2−4 j R jk + 2−2 j 2− j (1/2+H)R′

jk + 2− j (3/2−2H)R′′

jk)ξk2− j ,

with E[|R jk |
p

+ |R′

jk |
p

+ |R′′

jk |
p
] ≤ c, for p > 0. Hence E[Σ j (ξ)

2
] is less than

c2 j
‖ξ‖2

∞ + c22 j E

T (2 j
−1)∑

k,k′=0

2 j4H
{β

′2
jk − E[β

′2
jk]}{β

′2
jk′ − E[β

′2
jk′ ]}ξk2− j ξk′2− j

 .
Let Yk = β

′2
jk/E[β

′2
jk] − 1. The preceding inequality can be written as

E[Σ j (ξ)
2
] ≤ c2 j

‖ξ‖2
∞ + c22 j 2 j4H

T (2 j
−1)∑

k,k′=0

E[YkYk′ ]E[β
′2
jk]E[β

′2
jk′ ]ξk2− j ξk′2− j .

We now apply Mehler’s formula and we get

E[Σ j (ξ)
2
] ≤ c2 j

‖ξ‖2
∞ + 22 j 2 j4H

‖ξ‖2
∞2

T (2 j
−1)∑

k,k′=0

Cov(β ′

jk, β
′

jk′)
2

≤ c2 j
‖ξ‖2

∞ + c22 j 2 j4H
‖ξ‖2

∞

T (2 j
−1)∑

k,k′=0

2−2 j (1+2H)(1 + |k − k′
|)4(H−2)

≤ c2 j
‖ξ‖2

∞ + c‖ξ‖2
∞

T (2 j
−1)∑

k=0

+∞∑
i=0

(1 + i)4(H−2)
≤ c2 j

‖ξ‖2
∞. �

Lemma 4. Assume that ξ : [0, T ] → R is bounded and vanishes outside the interval
[k2− j0 , k′2− j0 ] ⊂ [0, T ] for some k, k′, j0 ≥ 1, k 6= k′. Then, there exists c > 0 such that
for j ≥ j0,

E[Σ j (ξ)
2
] ≤ c‖ξ‖2

∞|k′
− k|2 j− j0 .
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Proof. As ξz2− j is different from zero only if k2− j0 ≤ z2− j
≤ k′2− j0 , there are less than

|k − k′
|2 j− j0 + 1 admissible values for z. Hence we easily get that E[Σ j (ξ)

2
] is less than

c|k′
− k|2 j− j0 |k′

− k|2− j0‖ξ‖2
∞ + c

T (2 j
−1)∑

z,z′

|ξz2− j ||ξz′2− j |(1 + |z − z′
|)4(H−2).

By similar computations on the series as in the proof of Lemma 3, we get

E[Σ j (ξ)
2
] ≤ c|k′

− k|2 j− j0‖ξ‖2
∞ + c‖ξ‖∞

∑
z

|ξz2− j |.

The result follows. �

We now decompose the function t → ({Φ2
}
′)2(Z t ) in a wavelet basis with support [0, T ].

Thus, we use the same wavelet as before but in another context. We have the following lemma.

Lemma 5 (Decomposition in a Wavelet Basis). Let Γ = ({Φ2
}
′)2. Let φ be the scaling function

associated with ψ . We write φ0k(t) = φ(t − k),

ck =

∫
Γ (Z t )φ0k(t)dt and c jk =

∫
Γ (Z t )ψ jk(t)dt.

Then,

Γ (Z t ) =

r∑
k=0

ckφ0k(t)+

+∞∑
j=0

T (2 j
−1)∑

k=0

c jkψ jk(t),

where r is a constant value depending on T and with

E[c0 + · · · + cr ] ≤ c, E[c2
jk] ≤ c2− j (1+2H).

Proof. We have

c jk = 2− j/2
∫ T

0
ψ(u)Γ (Z2− j (k+u))du

= 2− j/2
∫ T

0
ψ(u)[Γ (Z2− j (k+u))− Γ (Z2− j k)]du

= 2− j/2
∫ T

0
ψ(u)[Z2− j (k+u) − Z2− j k]Γ

′(η)du,

with η a random value between Z2− j k and Z2− j (k+u). By the continuity of the sample path of
t → Z t , we know there exists a random point θ between k2− j and (k + u)2− j such that η = Zθ .
Thus, we have

c2
jk ≤ c2− j

∫ T

0
ψ2(u)[Z2− j (k+u) − Z2− j k]

2
{Γ ′(r [θ ])}2du,

with

r(θ) = a(0)Z ′
θ + θ f (0)+ h(θ, 0)+ [v(θ)− v(0)]ξ0.

As Z ′ is a Gaussian process, we easily get

E[(Z2− j (k+u) − Z2− j k)
4
] ≤ c2− j4H .
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Using Assumption B, we have

E[c2
jk] ≤ c2− j (1+2H)

∫ T

0
ψ(u)2{E[ec|r(θ)|

]}
1/2du.

Let p > 0 and Z̃ = supt∈[0,T ] |pZ ′
t |. By the same arguments as in the proof of Theorem 3(i),

we prove that E[eZ̃
] < ∞. Hence, using the hypothesis of model (5) and Cauchy–Schwarz

inequality, we get E[c2
jk] ≤ c2− j (1+2H). By a Taylor expansion, we get E[c0+· · ·+cr ] ≤ c. �

Lemma 6. Let Γ be as in Lemma 5. We have

E

[∣∣∣∣∣2 j
∑

k

{2 j2Hβ2
jk − c(ψ)2− j a(k2− j )2}Γ (Zk2− j )

∣∣∣∣∣
]

≤ c2 j/2.

Proof. We know from Lemma 5 that

Γ (Z t ) =

r∑
k=0

ckφ0k(t)+

+∞∑
j=0

T (2 j
−1)∑

k=0

c jkψ jk(t).

Let

S j (Γ ) = 2 j
∑

k

{2 j2Hβ2
jk − c(ψ)2− j a(k2− j )2}Γ (Z t ).

We can write

S j (Γ ) =

r∑
k=0

ckΣ j (φ0k)+

+∞∑
j1=0

S j, j1 ,

with

S j, j1 =

T (2 j
−1)∑

k=0

c j1kΣ j (ψ j1k).

For k = 0 to r , E[|ciΣ j (φ0i )|] ≤ c2 j/2, by Lemma 3. Now we prove that

E

[
+∞∑
j1=0

|S j, j1 |

]
≤ c2 j/2.

If j1 ≤ j , by Lemma 4,

E[|S j, j1 |] ≤ c
T (2 j1−1)∑

k=0

2− j1(1+2H)/2(E[Σ j (ψ j1k)
2
])1/2 ≤ c2 j1(1/2−H)2 j/2.

Because H > 1/2, we have

j∑
j1=0

E[|S j, j1 |] ≤ c2 j/2.

If j < j1, ψ j1k has support [k2− j1 , (k + T )2− j1 ], so Σ j (ψ j1k) = 0 unless there exists
i ∈ [0, T (2 j

− 1)] such that i2− j
∈ [k2− j1 , (k + T )2− j1 ], that is

k2 j− j1 ≤ i ≤ (k + T )2 j− j1 .
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Thus, there are less than c2 j possible values for i and moreover, for such i , the sum defining
Σ j (ψ j1k) is reduced to one single term, so, combining this result with Lemma 1, we get

E[Σ j (ψ j1k)
2
] ≤ c‖ψ j1k‖

2
∞ ≤ c2 j1

and

E[|S j, j1 |] ≤ c
T (2 j

−1)∑
k=0

2− j1(1+2H)/22 j1/2 ≤ c2 j 2− j1 H .

Finally

+∞∑
j1=0

E[|S j, j1 |] =

j∑
j1=0

E[|S j, j1 |] +

+∞∑
j1= j+1

E[|S j, j1 |] ≤ c2 j/2. �

Lemma 7 (Riemann’s Approximation). Let H(x, t) = a(x)2Γ (Z t ). We have

E

∣∣∣∣∣∣
∫ T

0
H(t, t)dt − 2− j

2 j T∑
k=1

H(k2− j , k2− j )

∣∣∣∣∣∣
 ≤ c2− j/2.

Proof. We easily get that

E

∣∣∣∣∣∣
∫ T

0
H(t, t)dt − 2− j

2 j T∑
k=1

H(k2− j , k2− j )

∣∣∣∣∣∣


is smaller than

2 j T∑
k=1

∫ k2− j

(k−1)2− j
a(t)2E[|(Z t − Zk2− j )Γ ′(Zθ [t,k2− j ])|] + |a(k2− j )2 − a(t)2|E[|Γ (Zk2− j )|]dt,

with θ [t, k2− j
] a random value between t and k2− j . The same arguments as in the proof of

Lemma 5 give that it is less than c(2− j
+ 2− j H ). �

5.2. Proof of Proposition 2

Let

β̃ jk =

∫
ψ jk(t)Φ2(Z t )dt.

Using the first vanishing moment of ψ , we have

β̃ jk = (Φ2)′(Zk2− j )β jk + 2− j/2
∫
ψ(t)(Z(k+u)2− j − Zk2− j )

2(Φ2)′′(Zθ [k2− j ,(k+1)2− j ]).

with θ [k2− j , (k + 1)2− j
] a random value between k2− j and (k + 1)2− j . So, β̃2

jk is equal to

Γ (Zk2− j )β
2
jk + 2− j 2−4 j H X jk + 2− j (1/2+H)2− j/22−2 j H Y jk,
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with E[|X jk |
p

+ |Y jk |
p
] ≤ cp, for p > 0. Hence∑

k

{2 j2H β̃2
jk − c(ψ)2− j a(k2− j )2Γ (Zk2− j )}

=

∑
k

{2 j2Hβ2
jk − c(ψ)2− j a(k2− j )2}Γ (Zk2− j )+ 2− j/2W jk,

with E[|W jk |
p
] ≤ cp, for p > 0. We finally get Proposition 2 by Lemmas 6 and 7.

6. Proof of Proposition 3

We begin by the proof of (i). With the notation of model (5), there exists η > 0 such that

c(ψ)
∫ T

0
a2(u){(Φ2)′(Zu)}

2du ≥ η

∫ β2

β1

{(Φ2)′(Zu)}
2du.

Let

ζ = η

∫ β2

β1

{(Φ2)′(Zu)}
2du.

Suppose there exists ε > 0 such that for all r > 0, P[ζ ≤ r ] ≥ ε. Since ζ ≥ 0, P[ζ = 0] ≥ ε.
By Assumption B, this implies Zu = 0 on [β1, β2] with positive probability, which is absurd by
the assumptions on model (5). Then, for ε > 0, there exists r > 0 such that

P[ζ ≥ 2r ] ≥ 1 − ε.

By Markov’s inequality, we have

P[22 j H Q j 6∈ [ζ − r, ζ + r ]] = P[|22 j H Q j − ζ | > r ] ≤ c
2− j/2

r
.

Thus,∑
j≥0

sup
H

P[22 j H Q j 6∈ [ζ − r, ζ + r ]] < +∞.

Then, by the Borel–Cantelli lemma, for large enough j a.s.

22 j H Q j ≥ ζ − r.

We now prove (ii). Let ε > 0, r and j0 be associated by Proposition 3(i) and j ≥ j0. We have

P

[
2 j/2 sup

l≥ j

∣∣∣∣Ql+1

Ql
− 2−2H

∣∣∣∣ ≥ M

]
= P

[
sup
l≥ j

|Ql+1 − 2−2H Ql | ≥ M Ql2− j/2

]

≤ ε + P

[
sup
l≥ j

|Ql+1 − 2−2H Ql | ≥ M2− j/22−2l H r

]
≤ ε +

∑
l≥ j≥ j0

E[|Ql+1 − 2−2H Ql |]22l H 2 j/2(Mr)−1.

Let

L = c(ψ)
∫ T

0
a2(u, u){(Φ2)′[Zu]}

2du.
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The quantity E[|Ql+1 − 2−2H Ql |] is equal to

E[|Ql+1 − 2−2(l+1)H L + 2−2(l+1)H L − 2−2H Ql |] ≤ c2−l(2H+1/2).

Eventually,

P

[
2 j/2 sup

l≥ j

∣∣∣∣Ql+1

Ql
− 2−2H

∣∣∣∣ ≥ M

]
≤ ε + c

∑
l≥ j≥ j0

2−l/22 j/2(Mr)−1.

For large enough M , this can be made arbitrarily small.

7. Proof of Proposition 4

With the notation of Section 2.2.2, we have

Q̂ j − Q j =

∑
k

b2
jk +

∑
k

f 2
jk +

∑
k

b jk f jk +

∑
k

d jkb jk +

∑
k

d jk f jk

+

∑
k

(e2
jk − ν̄ jk)+

∑
k

e jk f jk +

∑
k

b jke jk +

∑
k

d jke jk +

∑
k

ν jk − ν̄ jk .

Following Gloter and Hoffmann [17], it is enough to prove

sup
Jn≥ j≥ jn(H)−L

sup
H∈[H−,H+]

2− j/2E[|Q̂ j,n − Q j |] ≤ cn−1.

Now we bound the 10 terms one by one.
• Term 1: Let Vtl = σ 2

t − σ 2
k2− j +l2−N . We have

E[b2
jk] =

T (2N− j
−1)∑

l=0

T (2N− j
−1)∑

l ′=0

∫ k
2 j +

l+1
2N

k
2 j +

l
2N

∫ k
2 j +

l′+1
2N

k
2 j +

l′

2N

ψ jk(t)ψ jk(t
′)E[Vtl Vtl ′ ]dtdt ′

≤ c2 j
∑

l

∑
l ′

∫ k
2 j +

l+1
2N

k
2 j +

l
2N

∫ k
2 j +

l′+1
2N

k
2 j +

l′

2N

(
E[V 2

tl ]E[V 2
tl ′ ]

)1/2
dtdt ′.

Moreover, for t ∈ [k2− j
+ l2−N , k2− j

+ (l + 1)2−N
],

Vtl = (Z t − Zk2− j +l2−N )Φ2′

{Zk2− j +(l+v)2−N }

with v ∈ [0, 1]. By Assumption B and the same arguments as previously, E[V 2
tl ] ≤ c2−2N H .

Hence E[b2
jk] ≤ c2− j n−1.

• Term 2 and term 3 follow easily with the same order.
• Term 4: As in Lemma 5, we easily prove that E[d2

jk] ≤ c2− j (1+2H) and then, because

j ≥
1

2H+1 log2(n), E[|d jkb jk |] ≤ c2− j/2n−1.

• Term 5 follows as term 4 with the same order.
• Term 6: We argue first conditionally on the path of the volatility. We write Ẽ for the expectation
conditional on the path of the volatility. Because of the independence of the Brownian increments
and because the variables are centered, we have

Ẽ

(∑
k

e2
jk − ν jk

)2
 =

∑
k

Ẽ[(e2
jk − ν jk)

2
] ≤ c

∑
k

Ẽ[e4
jk + ν2

jk].
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Let

Ml =

(∫ k
2 j +

l+1
2N

k
2 j +

l
2N

σt dBt

)2

−

∫ k
2 j +

l+1
2N

k
2 j +

l
2N

σ 2
t dt.

Because the variables Ml , l = 0, . . . , T (2N− j
− 1), are centered and independent, we get that

Ẽ[e4
jk] is equal to

T (2N− j
−1)∑

l=0

T (2N− j
−1)∑

l ′=0

n4

(∫ k
2 j +

l+1
2N

k
2 j +

l
2N

ψ jk(t)dt
∫ k

2 j +
l′+1
2N

k
2 j +

l′

2N

ψ jk(t)dt

)2

Ẽ[M2
l M2

l ′ ].

Indeed the products of terms of power 3 with terms of power 1 are equal to zero. But, we have
the following equality in law:

M2
l
L
=

(∫ k
2 j +

l+1
2N

k
2 j +

l
2N

σ 2
t dt

)2

(Z2
− 1)2,

with Z a standard Gaussian variable. Hence,

Ẽ[M4
l ] = c

(∫ k
2 j +

l+1
2N

k
2 j +

l
2N

σ 2
t dt

)4

.

Now, we have

E

(∫ k
2 j +

l+1
2N

k
2 j +

l
2N

σ 2
t dt

)4
 ≤

∫∫∫∫ (
E[σ 8

t1 ]E[σ 8
t2 ]E[σ 8

t3 ]E[σ 8
t4 ]

)1/4
dt1dt2dt3dt4.

Moreover, there exists θ ∈ [0, T ] such that

σ 2
t = Φ2(Z t ) = Φ2(0)+ Φ2′

(Zθ )Z t .

This leads to E[σ 8
t ] ≤ c. Hence E[e4

jk] ≤ cn−2. We have

E[ν2
jk] = 4n4

T (2N− j
−1)∑

l=0

T (2N− j
−1)∑

l ′=0

(∫ k
2 j +

l+1
2N

k
2 j +

l
2N

ψ jk(t)dt
∫ k

2 j +
l′+1
2N

k
2 j +

l′

2N

ψ jk(t)dt

)2

× E

(∫ k
2 j +

l+1
2N

k
2 j +

l
2N

σ 2
t dt

)2 (∫ k
2 j +

l′+1
2N

k
2 j +

l′

2N

σ 2
t dt

)2 .
In the same way as for E[e4

jk], we get E[ν2
jk] ≤ cn−2.

• Term 7: In the preceding proof, we have shown E[e2
jk] ≤ cn−1 and so we obtain E[| f jke jk |] ≤

c2− j/2n−1.

• Term 8 follows exactly as term 7.



M. Rosenbaum / Stochastic Processes and their Applications 118 (2008) 1434–1462 1455

• Term 9: We argue first conditionally on the path of the volatility. Because of the independence
of the Brownian increments and because the variables are centered, we have

Ẽ

(∑
k

e jkd jk

)2
 =

∑
k

d2
jkẼ[e2

jk].

Again because of the independence of the Brownian increments and because the variables are
centered, we have

d2
jkẼ[e2

jk] = c
∫ k+T

2 j

k
2 j

ψ jk(t1)σ
2
t1 dt1

∫ k+T
2 j

k
2 j

ψ jk(t2)σ
2
t2 dt2

×

∑
l

n2

(∫ k
2 j +

l+1
2N

k
2 j +

l
2N

ψ jk(t3)dt3

)2 (∫ k
2 j +

l+1
2N

k
2 j +

l
2N

σ 2
t3 dt3

)2

.

So, we get

E[d2
jke2

jk] = cn2
∑

l

(∫ k
2 j +

l+1
2N

k
2 j +

l
2N

ψ jk(t3)dt3

)2

×

∫ k
2 j +

l+1
2N

k
2 j +

l
2N

∫ k
2 j +

l+1
2N

k
2 j +

l
2N

E

[∫ k+T
2 j

k
2 j

ψ jk(t1)σ
2
t1 dt1

∫ k+T
2 j

k
2 j

ψ jk(t2)σ
2
t2σ

2
t3σ

2
t4dt2

]
dt3dt4.

Because of the vanishing moment of the wavelet, we have

E

[∫ k+T
2 j

k
2 j

ψ jk(t1)σ
2
t1 dt1

∫ k+T
2 j

k
2 j

ψ jk(t2)σ
2
t2σ

2
t3σ

2
t4 dt2

]

= E

[∫ k+T
2 j

k
2 j

ψ jk(t1)
∫ k+T

2 j

k
2 j

ψ jk(t2)Vt10Vt20σ
2
t3σ

2
t4 dt2dt1

]

≤ c2 j 2−2 j
(
E[V 4

t10]E[V 4
t20]

)1/4
≤ c2− j 2− j2H .

Consequently, E[d2
jke2

jk] ≤ cn−12−3 j , but, as j ≥
log2 n

3 ,E[d2
jke2

jk] ≤ cn−2.

• Term 10: Let X =

(∫ k
2 j +

l+1
2N

k
2 j +

l
2N

σt dBt

)2

and X i =

(∫ k
2 j +

l+i+1
2N

k
2 j +

l+i
2N

σt dBt

)2

. Then,

ν jk = 2
2N− j

−1∑
l=0

n2

(∫ k
2 j +

l+1
2N

k
2 j +

l
2N

ψ jk(t)dt

)2 (∫ k
2 j +

l+1
2N

k
2 j +

l
2N

σ 2
u du

)2

,

ν̄ jk = 2
2N− j

−1∑
l=0

n2

(∫ k
2 j +

l+1
2N

k
2 j +

l
2N

ψ jk(t)dt

)2 (
1
h

h∑
i=0

X i

)2

,

where h = h(n) = bn1/2
c. The term ν jk − ν̄ jk is equal to
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2
2N− j

−1∑
l=0

n2

(∫ k
2 j +

l+1
2N

k
2 j +

l
2N

ψ jk(t)dt

)2 (∫ k
2 j +

l+1
2N

k
2 j +

l
2N

σ 2
u du +

1
h

h∑
i=0

X i

)

×

(∫ k
2 j +

l+1
2N

k
2 j +

l
2N

σ 2
u du −

1
h

h∑
i=0

X i

)
.

We argue first conditionally on the path of the volatility. We have

Ẽ

(∫ k
2 j +

l+1
2N

k
2 j +

l
2N

σ 2
u du −

1
h

h∑
i=0

X i

)2


≤ cẼ

(1
h

h∑
i=0

{X i − Ẽ[X i ]}

)2
+ cẼ

(1
h

h∑
i=0

Ẽ[X i ] − Ẽ[X ]

)2
 ,

with the following equality in law:

X i − Ẽ[X i ]
L
=

(∫ k
2 j +

l+i+1
2N

k
2 j +

l+i
2N

σ 2
t dt

)
(Z2

− 1),

with Z a standard Gaussian variable. Now,

E

(∫ k
2 j +

l+i+1
2N

k
2 j +

l+i
2N

σ 2
t dt

)2
 ≤ c2−2N .

Then, by independence of the Brownian increments and because the variables are centered,

Ẽ

(1
h

h∑
i=0

{X i − Ẽ[X i ]}

)2
 =

1

h2

h∑
i=0

Ẽ[(X i − ẼX i )
2
] ≤

c

h
2−2N .

For the other term, E[( 1
h

∑h
i=0 ẼX i − ẼX)2] is equal to

E

(1
h

h∑
i=0

∫ k
2 j +

l+i+1
2N

k
2 j +

l+i
2N

σ 2
t dt −

∫ k
2 j +

l+1
2N

k
2 j +

l
2N

σ 2
t dt

)2


=
1

h2

h∑
i=0

h∑
g=0

∫ k
2 j +

l+1
2N

k
2 j +

l
2N

∫ k
2 j +

l+1
2N

k
2 j +

l
2N

E[(σ 2
u+i2−N − σ 2

u )(σ
2
v+g2−N − σ 2

v )]dudv

≤
c

h2

h∑
i=0

h∑
g=0

∫ k
2 j +

l+1
2N

k
2 j +

l
2N

∫ k
2 j +

l+1
2N

k
2 j +

l
2N

(ig)H 2−2N H dudv ≤ c2−2N (1+H)h2H .

Eventually,

E

(∫ k
2 j +

l+1
2N

k
2 j +

l
2N

σ 2
u du −

1
h

h∑
i=0

X i

)2
 ≤ c

n−2
√

n
.



M. Rosenbaum / Stochastic Processes and their Applications 118 (2008) 1434–1462 1457

We easily check that the term

E

(∫ k
2 j +

l+1
2N

k
2 j +

l
2N

σ 2
u du +

1
h

h∑
i=0

X i

)2


is less than cn−2 and finally E[|ν jk − ν̄ jk |] ≤ cn−12− j/2, because j ≤
log2 n

2 .

8. Proof of Theorem 3(ii)

We now prove that Propositions 3 and 4 together imply Theorem 3(ii). Following Lemma 1
of Gloter and Hoffmann [17], we easily obtain that for all positive ε, there exist n0 and M > 0,
such that for all n ≥ n0,

P[n1/(4H+2)
|Ĥn − H | ≥ M] ≤ ε. (16)

With no loss of generality, we may demand Ĥ ≤ C , with C > 2 a constant value, by considering
H̃ = Ĥ1

|Ĥ |≤C . Let ε > 0, n0,M be associated by (16). For n ≥ n0, if (C − 1)n1/(4H+2) > M ,
we have

P[Ĥn ≥ C] ≤ P[n1/(4H+2)
|Ĥn − H | ≥ (C − 1)n1/(4H+2)

] ≤ ε.

Let n∗

0 ≥ n0 be such that (C − 1)n∗

0 ≥ M . For all n ≤ n∗

0,

n1/(4H+2)
|H̃n − H | ≤ (C + 1)(n∗

0)
1/(4H+2).

Let M1 = max{M, (C + 1)(n∗

0)
1/(4H+2)

}. For all n,

P[n1/(4H+2)
|H̃n − H | ≥ M1] ≤ ε.

9. Proof of Theorem 2

9.1. Proof of Proposition 5

We observe{
Yi/n = y0 +

∫ i/n

0
Φ
(∫ s

0
a(s, u)dW H

u + f (s)ξ0

)
dBs, i = 1, . . . , nT

}
.

Without loss of generality, we set here ξ0 = 0. Consider the equivalent sample

{Zi/n = Yi/n − Y(i−1)/n, i = 1, . . . , nT }.

Conditional on W H
= f , Zi/n is a centered Gaussian variable with variance γi where

γi =

∫ i/n

(i−1)/n
Φ2
(∫ s

0
a(s, u)d fu

)
ds.

Moreover, conditional on W H , the observations are independent. We define by K (µ, ν) =∫
(log dµ

dν )dµ ≤ +∞ the Kullback–Leibler divergence between two probability measures
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µ and ν. We recall the classical Pinsker’s inequality ‖µ − ν‖TV ≤
√

2K (µ, ν)1/2. Let Pn
f be

the law of the sample conditional on W H
= f ; let

βi =

∫ i/n

(i−1)/n
Φ2
(∫ s

0
a(s, u)dgu

)
ds.

We have

‖Pn
f − Pn

g‖TV ≤
√

2K (Pn
f ,P

n
g)

1/2.

By classical computations, we get

K (Pn
f ,P

n
g) =

1
2

nT∑
i=1

(
− log

γi

βi
− 1 +

γi

βi

)
.

By Assumption C, we have (c4/c5)
2

≤ γi/βi ≤ (c5/c4)
2. Let a = (c4/c5)

2, b = (c5/c4)
2 and

c ≥ 1/2. Consider

z(x) = log x − 1 + 1/x − c(x − 1)2, x ∈ [a, b].

We have z(a) = log a − 1 + 1/a − c(a − 1)2, so, if c ≥
log a−1+1/a
(a−1)2

, we have z(a) ≤ 0. Take

c = c∗
= max

(
1
2
,

log a − 1 + 1/a

(a − 1)2

)
.

Hence z is non-positive on [a, b]; consequently, K (Pn
f ,P

n
g) is less than

K (Pn
f ,P

n
g) ≤ c

nT∑
i=1

(
βi

γi
− 1

)2

≤ cn2
nT∑
i=1

(∫ i/n

(i−1)/n

∣∣∣∣Φ (∫ s

0
a(s, u)d fu

)
− Φ

(∫ s

0
a(s, u)dgu

)∣∣∣∣ ds

)2

≤ cn
∫ T

0

∣∣∣∣∫ s

0
a(s, u)d fu −

∫ s

0
a(s, u)dgu

∣∣∣∣2 ds

≤ cn
∫ T

0

∣∣∣∣a(s, s)[ f (s)− g(s)] +

∫ s

0
∂2a(s, u)[g(u)− f (u)]du

∣∣∣∣2 ds

≤ cn‖ f − g‖
2
2.
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Appendix

A.1. Proof of Proposition 1

The link between Besov spaces and Gaussian processes has been heavily studied; see in
particular Ciesielski, Kerkyacharian and Roynette [8] and Nualart and Ouknine [31]. We give
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here some simple proofs for our case. Let (φ, ψ) be a well chosen wavelet basis. For f a real
function on R, we set

α0k =

∫
f (x)φ0k(x)dx, β jk =

∫
f (x)ψ jk(x)dx .

Recall that in terms of wavelet coefficients, the Besov space Bs
p,q(R), with s ∈ [0, 1], 1 ≤ p, q <

∞, is the space of all functions f such that the following norm is finite:

‖ f ‖Bs
p,q

= ‖α0.‖lp +

[∑
j

(
2 j (s−1/p+1/2)

‖β j.‖lp

)q
]1/q

,

where

‖β j.‖lp =

(∑
k

|β jk |
p

)1/p

.

If p or q is equal to ∞, then the corresponding norm in p or q is replaced by the sup norm. For
details, we refer the reader to Cohen [10]. Here we say that an f ∈ Bs

p,q([0, T ]) if there exists g
such that g ∈ Bs

p,q(R) and the restriction of g to [0, T ] is equal to f .

First, we show that the trajectory of t → σ 2
t belongs a.s. to BH

2,∞([0, T ]). It is enough to prove

that sup j 22 j H Q j < ∞. We know that for all positive ε, there exist j0 and M > 0 such that

P

[
2 j/2 sup

l≥ j≥ j0

∣∣∣∣Ql+1

Ql
− 2−2H

∣∣∣∣ ≥ M

]
≤ ε.

This implies that

P

[
∃ j0, ∃M, 2 j/2 sup

l≥ j≥ j0

∣∣∣∣Ql+1

Ql
− 2−2H

∣∣∣∣ ≤ M

]
= 1.

Let u j = 22 j H Q j . For such j0, for all j ≥ j0, |u j+1/u j | ≤ 1 + M2− j/2. Thus, log u j+1 −

log u j ≤ log(1 + M2− j/2) ≤ M2− j/2 and log un ≤ c. Hence the trajectory belongs a.s. to
BH

2,∞([0, T ]). Nevertheless, it does not belong to BH
2,q([0, T ]), q < ∞. As a matter of fact, for

all ε positive, there exist j0 and r > 0 such that for all j ≥ j0, P[22 j H Q j ≥ r ] ≥ 1 − ε. So,
almost surely,

+∞∑
j=0

(22 j H Q j )
q

= +∞.

The fact that for s < H , the trajectory belongs almost surely to Bs
∞,∞([0, T ]) is clear by

Kolmogorov’s criterion and preceding calculations on the expectations. We now prove that it
does not belong to BH

∞,∞([0, T ]). Suppose that almost surely, there exists c such that for all
(s, t) ∈ [β1, β2],∣∣∣∣Φ2

(∫ t

0
a(t, u)dW H

u

)
− Φ2

(∫ s

0
a(s, u)dW H

u

)
+ [ f (t)− f (s)]ξ0

∣∣∣∣ ≤ c|t − s|H .
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Because there exists c > 0 such that for all x , |(Φ2)′(x)| > c, this implies∣∣∣∣∫ t

0
a(t, u)dW H

u −

∫ s

0
a(s, u)dW H

u + [ f (t)− f (s)]ξ0

∣∣∣∣ ≤ c|t − s|H .

Ito’s formula gives

|W H
t a(t, t)− W H

s a(s, s)+ R(t, s)| ≤ c|t − s|H ,

with

R(t, s) = [ f (t)− f (s)]ξ0 −

∫ t

s
∂2a(t, u)W H

u du −

∫ s

0
∂2[a(t, u)− a(s, u)]W H

u du.

For fixed ε > 0 and |t − s| small enough,

(t − s)1−H
∣∣∣∣ R(t, s)

t − s

∣∣∣∣ ≤ ε

and consequently,∣∣∣∣ (W H
t − W H

s )a(t, t)

(t − s)H −
W H

s [a(s, s)− a(t, t)]

(t − s)H

∣∣∣∣ ≤ c + ε.

Eventually, we get for |t − s| small enough,∣∣∣∣W H
t − W H

s

(t − s)H

∣∣∣∣ ≤
c + 2ε

inf
x∈[β1,β2]

a(x, x)
,

which is absurd as a.s. the fbm is H Hölderian on no interval; see Arcones [2].

A.2. One numerical illustration

As explained in Section 1.4, getting accurate estimations with a small number of data is
hopeless. Nevertheless, the estimation rates remain polynomial and so estimation procedures are
conceivable as soon as we get a “reasonably big” number of data. For example, financial data are
available in large amounts. Moreover, the number of data can be increased using aggregation
techniques, between assets. Note that the fact that T is fixed and that we consider a “high
frequency” asymptotic does not mean we can only consider T = 1 day. The value of T might
be in the order of magnitude of years. Nevertheless, the sampling period has to be such that the
discretized process lives at the “diffusive scale” (that is in general a sampling period bigger than
10 min), in order to avoid microstructure noise effects. We present here some numerical results
in the model where σt = eW H

t . For H = 0.6, 0.7, 0.8, 0.9, 10 000 simulations are done with
a frequency n = 216. We compute the estimator for each simulated sample path. We set the
estimator to 0.5 if the estimated value is smaller than 0.5 and to 1 if it is bigger than 1. We obtain
the following histograms.
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We see that the distributions are shifted to the right when going from 0.6 to 0.9.
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Studia Math. 107 (1993) 172–204.
[9] J.F. Cœurjolly, Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths,

Stat. Inference Stoch. Process. 4 (2) (2001) 199–227.
[10] A. Cohen, Wavelet methods in numerical analysis, in: P.G. Ciarlet, J.L. Lions (Eds.), Handbook of Numerical

Analysis, vol. VII, Elsevier Science, 1999.
[11] F. Comte, L. Coutin, E. Renault, Affine fractional stochastic volatility models with application to option pricing,

2003, Preprint, University of Montreal.



1462 M. Rosenbaum / Stochastic Processes and their Applications 118 (2008) 1434–1462

[12] F. Comte, E. Renault, Long-memory in continuous-time stochastic volatility models, Math. Finance 8 (1998)
291–323.

[13] I. Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 41 (1988) 909–996.
[14] R. Deo, C. Hurvich, Y. Lu, On the log-periodogram regression estimator of the memory parameter in long memory

stochastic volatility model, Econometric Theory 17 (4) (2004) 686–710.
[15] P. Doukhan, G. Oppenheim, M. Taqqu (Eds.), Long-Range Dependence: Theory and Applications, Birkhäuser,
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