期刊论文详细信息
BMC Microbiology
Global transcriptional responses to the bacteriocin colicin M in Escherichia coli
Research Article
Darja Žgur-Bertok1  Simona Kamenšek1 
[1] Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia;
关键词: Antimicrobial agent;    Bacteriocin;    Colicin M;    Escherichia coli;    Gene expression;    Peptidoglycan;   
DOI  :  10.1186/1471-2180-13-42
 received in 2012-08-31, accepted in 2013-02-18,  发布年份 2013
来源: Springer
PDF
【 摘 要 】

BackgroundBacteriocins are protein antimicrobial agents that are produced by all prokaryotic lineages. Escherichia coli strains frequently produce the bacteriocins known as colicins. One of the most prevalent colicins, colicin M, can kill susceptible cells by hydrolyzing the peptidoglycan lipid II intermediate, which arrests peptidoglycan polymerization steps and provokes cell lysis. Due to the alarming rise in antibiotic resistance and the lack of novel antimicrobial agents, colicin M has recently received renewed attention as a promising antimicrobial candidate. Here the effects of subinhibitory concentrations of colicin M on whole genome transcription in E. coli were investigated, to gain insight into its ecological role and for purposes related to antimicrobial therapy.ResultsTranscriptome analysis revealed that exposure to subinhibitory concentrations of colicin M altered expression of genes involved in envelope, osmotic and other stresses, including genes of the CreBC two-component system, exopolysaccharide production and cell motility. Nonetheless, there was no induction of biofilm formation or genes involved in mutagenesis.ConclusionAt subinhibitory concentrations colicin M induces an adaptive response primarily to protect the bacterial cells against envelope stress provoked by peptidoglycan damage. Among the first induced were genes of the CreBC two-component system known to promote increased resistance against colicins M and E2, providing novel insight into the ecology of colicin M production in natural environments. While an adaptive response was induced nevertheless, colicin M application did not increase biofilm formation, nor induce SOS genes, adverse effects that can be provoked by a number of traditional antibiotics, providing support for colicin M as a promising antimicrobial agent.

【 授权许可】

CC BY   
© Kamenšek and Žgur-Bertok; licensee BioMed Central Ltd. 2013

【 预 览 】
附件列表
Files Size Format View
RO202311108904330ZK.pdf 422KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  • [82]
  • [83]
  • [84]
  • [85]
  • [86]
  • [87]
  • [88]
  文献评价指标  
  下载次数:6次 浏览次数:2次