期刊论文详细信息
BMC Microbiology
Global transcriptional responses to the bacteriocin colicin M in Escherichia coli
Darja Žgur-Bertok1  Simona Kamenšek1 
[1] Department of Biology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
关键词: Peptidoglycan;    Gene expression;    Escherichia coli;    Colicin M;    Bacteriocin;    Antimicrobial agent;   
Others  :  1144312
DOI  :  10.1186/1471-2180-13-42
 received in 2012-08-31, accepted in 2013-02-18,  发布年份 2013
PDF
【 摘 要 】

Background

Bacteriocins are protein antimicrobial agents that are produced by all prokaryotic lineages. Escherichia coli strains frequently produce the bacteriocins known as colicins. One of the most prevalent colicins, colicin M, can kill susceptible cells by hydrolyzing the peptidoglycan lipid II intermediate, which arrests peptidoglycan polymerization steps and provokes cell lysis. Due to the alarming rise in antibiotic resistance and the lack of novel antimicrobial agents, colicin M has recently received renewed attention as a promising antimicrobial candidate. Here the effects of subinhibitory concentrations of colicin M on whole genome transcription in E. coli were investigated, to gain insight into its ecological role and for purposes related to antimicrobial therapy.

Results

Transcriptome analysis revealed that exposure to subinhibitory concentrations of colicin M altered expression of genes involved in envelope, osmotic and other stresses, including genes of the CreBC two-component system, exopolysaccharide production and cell motility. Nonetheless, there was no induction of biofilm formation or genes involved in mutagenesis.

Conclusion

At subinhibitory concentrations colicin M induces an adaptive response primarily to protect the bacterial cells against envelope stress provoked by peptidoglycan damage. Among the first induced were genes of the CreBC two-component system known to promote increased resistance against colicins M and E2, providing novel insight into the ecology of colicin M production in natural environments. While an adaptive response was induced nevertheless, colicin M application did not increase biofilm formation, nor induce SOS genes, adverse effects that can be provoked by a number of traditional antibiotics, providing support for colicin M as a promising antimicrobial agent.

【 授权许可】

   
2013 Kamenšek and Žgur-Bertok; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150330113657446.pdf 332KB PDF download
Figure 3. 49KB Image download
Figure 2. 39KB Image download
Figure 1. 38KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Goh EB, Yim G, Tsui W, McClure J, Surette MG, Davies J: Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci USA 2002, 99:17025-17030.
  • [2]Davies J, Spiegelman GB, Yim G: The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 2006, 9:445-453.
  • [3]Braun V, Patzer SI, Hantke K: Ton-dependent colicins and microcins: modular design and evolution. Biochimie 2002, 84:365-380.
  • [4]El Ghachi M, Bouhss A, Barreteau H, Touzé T, Auger G, Blanot D, Mengin-Lecreulx D: Colicin M exerts its bacteriolytic effect via enzymatic degradation of undecaprenyl phosphate-linked peptidoglycan precursors. J Biol Chem 2006, 281:22761-22772.
  • [5]Harkness RE, Olschläger T: The biology of colicin M. FEMS Microbiol Rev 1991, 8:27-41.
  • [6]Sasarman A, Massie B, Zollinger M, Gagnetellier H, Shareck F, Garzon S, Morisset R: Naturally occurring R. ColBM plasmids belonging to the IncfIII incompatibility group. J Genl Microbiol 1980, 119:475-483.
  • [7]Christenson JK, Gordon DM: Evolution of colicin BM plasmids: the loss of the colicin B activity gene. Microbiology 2009, 155:1645-1655.
  • [8]Kerr B, Riley MA, Feldman MW, Bohannan BJM: Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 2002, 418:171-174.
  • [9]Kirkup BC, Riley MA: Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 2004, 428:412-414.
  • [10]Lautenbach E, Patel JB, Bilker WB, Edelstein PH, Fishman NO: Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae: risk factors for infection and impact of resistance on outcomes. Clin Infect Dis 2001, 32:1162-1171.
  • [11]Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, Krishnan P, Kumar AV, Maharjan S, Mushtaq S, Noorie T, Paterson DL, Pearson A, Perry C, Pike R, Rao B, Ray U, Sarma JB, Sharma M, Sheridan E, Thirunarayan MA, Turton J, Upadhyay S, Warner M, Welfare W, Livermore DM: Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 2010, 10:597-602.
  • [12]Patin D, Barreteau H, Auger G, Magnet S, Crouvoisier M, Bouhss A, Touze T, Arthur M, Mengin-Lecreulx D, Blanot D: Colicin M hydrolyses branched lipids II from Gram-positive bacteria. Biochimie 2012, 94:985-990.
  • [13]Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y: The complete genome sequence of Escherichia coli K-12. Science 1997, 277:1453-1462.
  • [14]Nikaido H: Outer membrane. In Escherichia coli and Salmonella: Cellular and Molecular biology. Volume 1. 2nd edition. Edited by Neidhardt FC, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE. Washington, DC: ASM Press; 1996:29-47.
  • [15]Kadner RJ: Cytoplasmic membrane. In Escherichia coli and Salmonella: Cellular and Molecular biology. Volume 1. 2nd edition. Edited by Neidhardt FC, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE. Washington, DC: ASM Press; 1996:58-87.
  • [16]Casino P, Rubio V, Marina A: The mechanism of signal transduction by two-component systems. Curr Opin Struct Biol 2010, 20:763-771.
  • [17]Coyette J, Van Der Ende A: Peptidoglycan: the bacterial Achilles heel. FEMS Microbiol Rev 2008, 32:147-148.
  • [18]Bury-Moné S, Nomane Y, Reymond N, Barbet R, Jacquet E, Imbeaud S, Jacq A, Bouloc P: Global analysis of extracytoplasmic stress signaling in Escherichia coli. PLoS Genet 2009, 5:e1000651.
  • [19]McBroom AJ, Kuehn MJ: Release of outer membrane vesicles by gram-negative bacteria is a novel envelope stress response. Mol Microbiol 2007, 63:545-558.
  • [20]Ruiz N, Silhavy TJ: Sensing external stress: watchdogs of the Escherichia coli cell envelope. Curr Opin Microbiol 2005, 8:122-126.
  • [21]Stout V, Torres-Cabassa A, Maurizi MR, Gutnick D, Gottesman S: RcsA, an unstable positive regulator of capsular polysaccharide synthesis. J Bacteriol 1991, 173:1738-1747.
  • [22]Rahn A, Whitfield C: Transcriptional organization and regulation of the Escherichia coli K30 group 1 capsule biosynthesis (cps) gene cluster. Mol Microbiol 2003, 47:1045-1060.
  • [23]Ferrières L, Clarke DJ: The RcsC sensor kinase is required for normal biofilm formation in Escherichia coli K-12 and controls the expression of a regulon in response to growth on a solid surface. Mol Microbiol 2003, 50:1665-1682.
  • [24]Prigent-Combaret C, Prensier G, Le Thi TT, Vidal O, Lejeune P, Dorel C: Developmental pathway for biofilm formation in curli-producing Escherichia coli strains: role of flagella, curli and colanic acid. Environ Microbiol 2000, 2:450-464.
  • [25]Francez-Charlot A, Castanié-Cornet MP, Gutierrez C, Cam K: Osmotic regulation of the Escherichia coli bdm (biofilm-dependent modulation) gene by the RcsCDB His-Asp phosphorelay. J Bacteriol 2005, 187:3873-3877.
  • [26]Laubacher ME, Ades SE: The Rcs phosphorelay is a cell envelope stress response activated by peptidoglycan stress and contributes to intrinsic antibiotic resistance. J Bacteriol 2008, 190:2065-2074.
  • [27]Callewaert L, Vanoirbeek KGA, Lurquin I, Michiels CW, Aertsen A: The Rcs two-component system regulates expression of lysozyme inhibitors and is induced by exposure to lysozyme. J Bacteriol 2009, 191:1979-1981.
  • [28]Raivio TL, Popkin DL, Silhavy TJ: The Cpx envelope stress response is controlled by amplification and feedback inhibition. J Bacteriol 1999, 181:5263-5272.
  • [29]Joly N, Engl C, Jovanovic G, Huvet M, Toni T, Sheng X, Stumpf MPH, Buck M: Managing membrane stress: the phage shock protein (Psp) response, from molecular mechanisms to physiology. FEMS Microbiol Rev 2010, 34:797-827.
  • [30]Kobayashi H, Yamamoto M, Aono R: Appearance of a stress-response protein, phage-shock protein A, in Escherichia coli exposed to hydrophobic organic solvents. Microbiology 1998, 144:353-359.
  • [31]Jovanovic G, Lloyd LJ, Stumpf MPH, Mayhew AJ, Buck M: Induction and function of the phage shock protein extracytoplasmic stress response in Escherichia coli. J Biol Chem 2006, 281:21147-21161.
  • [32]Kobayashi R, Suzuki T, Yoshida M: Escherichia coli phage-shock protein A (PspA) binds to membrane phospholipids and repairs proton leakage of the damaged membranes. Mol Microbiol 2007, 66:100-109.
  • [33]Gottesman S, Stout V: Regulation of capsular polysaccharide synthesis in Escherichia coli K12. Mol Microbiol 1991, 5:1599-1606.
  • [34]Agladze K, Wang X, Romeo T: Spatial periodicity of Escherichia coli K-12 biofilm microstructure initiates during a reversible, polar attachment phase of development and requires the polysaccharide adhesin PGA. J Bacteriol 2005, 187:8237-8246.
  • [35]Sledjeski DD, Gottesman S: Osmotic shock induction of capsule synthesis in Escherichia coli K-12. J Bacteriol 1996, 178:1204-1206.
  • [36]Stevenson G, Andrianopoulos K, Hobbs M, Reeves PR: Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J Bacteriol 1996, 178:4885-4893.
  • [37]Böhringer J, Fischer D, Mosler G, Henggearonis R: UDP-glucose is a potential intracellular signal molecule in the control of expression of sigma S and sigma S-dependent genes in Escherichia coli. J Bacteriol 1995, 177:413-422.
  • [38]Ferrières L, Aslam SN, Cooper RM, Clarke DJ: The yjbEFGH locus in Escherichia coli K-12 is an operon encoding proteins involved in exopolysaccharide production. Microbiology 2007, 153:1070-1080.
  • [39]Ionescu M, Belkin S: Overproduction of exopolysaccharides by an Escherichia coli K-12 rpoS mutant in response to osmotic stress. Appl Environ Microbiol 2009, 75:483-492.
  • [40]Cariss SJL, Tayler AE, Avison MB: Defining the growth conditions and promoter-proximal DNA sequences required for activation of gene expression by CreBC in Escherichia coli. J Bacteriol 2008, 190:3930-3939.
  • [41]Helbig S, Hantke K, Ammelburg M, Braun V: CbrA is a flavin adenine dinucleotide protein that modifies the Escherichia coli outer membrane and confers specific resistance to colicin M. J Bacteriol 2012, 194:4894-4903.
  • [42]Kuhar I, Žgur-Bertok D: Transcription regulation of the colicin K cka gene reveals induction of colicin synthesis by differential responses to environmental signals. J Bacteriol 1999, 181:7373-7380.
  • [43]Eraso JM, Chidambaram M, Weinstock GM: Increased production of colicin E1 in stationary phase. J Bacteriol 1996, 178:1928-1935.
  • [44]Moya B, Dötsch A, Juan C, Blázquez J, Zamorano L, Haussler S, Oliver A: Beta-lactam resistance response triggered by inactivation of a nonessential penicillin-binding protein. PLoS Pathog 2009, 5:e1000353.
  • [45]Jung JU, Gutierrez C, Martin F, Ardourel M, Villarejo M: Transcription of osmB, a gene encoding an Escherichia coli lipoprotein, is regulated by dual signals. Osmotic stress and stationary phase. J Biol Chem 1990, 265:10574-10581.
  • [46]Lee J, Hiibel SR, Reardon KF, Wood TK: Identification of stress-related proteins in Escherichia coli using the pollutant cis-dichloroethylene. J Appl Microbiol 2010, 108:2088-2102.
  • [47]Ratajczak E, Ziętkiewicz S, Liberek K: Distinct activities of Escherichia coli small heat shock proteins IbpA and IbpB promote efficient protein disaggregation. J Mol Biol 2009, 386:178-189.
  • [48]Flemming H-C, Wingender J: The biofilm matrix. Nat Rev Micro 2010, 8:623-633.
  • [49]Costerton JW, Stewart PS, Greenberg EP: Bacterial biofilms: a common cause of persistent infections. Science 1999, 284:1318-1322.
  • [50]Danese PN, Pratt LA, Kolter R: Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 2000, 182:3593-3596.
  • [51]Boehm A, Vogel J: The csgD mRNA as a hub for signal integration via multiple small RNAs. Mol Microbiol 2012, 84:1-5.
  • [52]Mika F, Busse S, Possling A, Berkholz J, Tschowri N, Sommerfeldt N, Pruteanu M, Hengge R: Targeting of csgD by the small regulatory RNA RprA links stationary phase, biofilm formation and cell envelope stress in Escherichia coli. Mol Microbiol 2012, 84:51-65.
  • [53]Holmqvist E, Reimegård J, Sterk M, Grantcharova N, Römling U, Wagner EGH: Two antisense RNAs target the transcriptional regulator CsgD to inhibit curli synthesis. EMBO J 2010, 29:1840-1850.
  • [54]Sim SH, Yeom JH, Shin C, Song WS, Shin E, Kim HM, Cha CJ, Han SH, Ha NC, Kim SW, Hahn Y, Bae J, Lee K: Escherichia coli ribonuclease III activity is downregulated by osmotic stress: consequences for the degradation of bdm mRNA in biofilm formation. Mol Microbiol 2010, 75:413-425.
  • [55]Jonas K, Edwards AN, Simm R, Romeo T, Römling U, Melefors Ö: The RNA binding protein CsrA controls cyclic di-GMP metabolism by directly regulating the expression of GGDEF proteins. Mol Microbiol 2008, 70:236-257.
  • [56]Price NL, Raivio TL: Characterization of the Cpx regulon in Escherichia coli strain MC4100. J Bacteriol 2009, 191:1798-1815.
  • [57]Yamamoto K, Ishihama A: Characterization of copper-inducible promoters regulated by CpxA/CpxR in Escherichia coli. Biosci Biotechnol Biochem 2006, 70:1688-1695.
  • [58]Wang X, Preston JF, Romeo T: The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 2004, 186:2724-2734.
  • [59]Soutourina OA, Bertin PN: Regulation cascade of flagellar expression in Gram-negative bacteria. FEMS Microbiol Rev 2003, 27:505-523.
  • [60]Shi W, Li C, Louise CJ, Adler J: Mechanism of adverse conditions causing lack of flagella in Escherichia coli. J Bacteriol 1993, 175:2236-2240.
  • [61]Soutourina OA, Krin E, Laurent-Winter C, Hommais F, Danchin A, Bertin PN: Regulation of bacterial motility in response to low pH in Escherichia coli: the role of H-NS protein. Microbiology 2002, 148:1543-1551.
  • [62]Torres-Cabassa AS, Gottesman S: Capsule synthesis in Escherichia coli K-12 is regulated by proteolysis. J Bacteriol 1987, 169:981-989.
  • [63]Yim G, Huimi Wang H, Davies J: The truth about antibiotics. Int J Med Microbiol 2006, 296:163-170.
  • [64]Fajardo A, Martinez JL: Antibiotics as signals that trigger specific bacterial responses. Curr Opin Microbiol 2008, 11:161-167.
  • [65]Sailer FC, Meberg BM, Young KD: β-Lactam induction of colanic acid gene expression in Escherichia coli. FEMS Microbiol Lett 2003, 226:245-249.
  • [66]Kaldalu M, Mei R, Lewis K: Killing by ampicillin and ofloxacin induces overlapping changes in Escherichia coli transcription profile. Antimicrob Agents Chemother 2004, 48:890-896.
  • [67]Subrt N, Mesak LR, Davies J: Modulation of virulence gene expression by cell wall active antibiotics in Staphylococcus aureus. J Antimicrob Chemother 2011, 66:979-984.
  • [68]Hoffman LR, D’Argenio DA, MacCoss MJ, Zhang Z, Jones RA, Miller SI: Aminoglycoside antibiotics induce bacterial biofilm formation. Nature 2005, 436:1171-1175.
  • [69]Linares JF, Gustafsson I, Baquero F, Martinez JL: Antibiotics as intermicrobial signaling agents instead of weapons. Proc Natl Acad Sci USA 2006, 103:19484-19489.
  • [70]Ohmori H, Friedberg EC, Fuchs RP, Goodman MF, Hanaoka F, Hinkle D, Kunkel TA, Lawrence CW, Livneh Z, Nohmi T, Prakash L, Prakash S, Todo T, Walker GC, Wang Z, Woodgate R: The Y-family of DNA polymerases. Mol Cell 2001, 8:7-8.
  • [71]Kohanski MA, DePristo MA, Collins JJ: Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 2010, 37:311-320.
  • [72]Thi DT, López E, Rodríguez-Rojas A, Rodríguez-Beltrán J, Couce A, Guelfo JR, Castañeda-García A, Blázquez J: Effect of recA inactivation on mutagenesis of Escherichia coli exposed to sublethal concentrations of antimicrobials. J Antimicrob Chemother 2011, 66:531-538.
  • [73]Moreau PL: Diversion of the metabolic flux from pyruvate dehydrogenase to pyruvate oxidase decreases oxidative stress during glucose metabolism in nongrowing Escherichia coli cells incubated under aerobic, phosphate starvation conditions. J Bacteriol 2004, 186:7364-7368.
  • [74]Majeed H, Gillor O, Kerr B, Riley MA: Competitive interactions in Escherichia coli populations: the role of bacteriocins. ISME J 2011, 5:71-81.
  • [75]Walker D, Rolfe M, Thompson A, Moore GR, James R, Hinton JCD, Kleanthous C: Transcriptional profiling of colicin-induced cell death of Escherichia coli MG1655 identifies potential mechanisms by which bacteriocins promote bacterial diversity. J Bacteriol 2004, 186:866-869.
  • [76]Barreteau H, Bouhss A, Fourgeaud M, Mainardi JL, Touzé T, Gérard F, Blanot D, Arthur M, Mengin-Lecreulx D: Human- and plant-pathogenic Pseudomonas species produce bacteriocins exhibiting colicin M-like hydrolase activity towards peptidoglycan precursors. J Bacteriol 2009, 191:3657-3664.
  • [77]Barnéoud-Arnoulet A, Barreteau H, Touzé T, Mengin-Lecreulx D, Lloubès R, Duché D: Toxicity of the colicin M catalytic domain exported to the periplasm is FkpA independent. J Bacteriol 2010, 192:5212-5219.
  • [78]Barreteau H, Bouhss A, Gérard F, Duché D, Boussaid B, Blanot D, Lloubès R, Mengin-Lecreulx D, Touzé T: Deciphering the catalytic domain of colicin M, a peptidoglycan lipid II-degrading enzyme. J Biol Chem 2010, 285:12378-12389.
  • [79]Breukink E, de Kruijff B: Lipid II as a target for antibiotics. Nat Rev Drug Discov 2006, 5:321-323.
  • [80]Budič M, Rijavec M, Petkovšek Ž, Žgur-Bertok D: Escherichia coli bacteriocins: antimicrobial efficacy and prevalence among isolates from patients with bacteraemia. PLoS One 2011, 6:e28769.
  • [81]Anderluh G, Gökçe I, Lakey JH: Expression of proteins using the third domain of the Escherichia coli periplasmic-protein TolA as a fusion partner. Protein Expr Purif 2003, 28:173-181.
  • [82]Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B Met 1995, 57:289-300.
  • [83]Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000, 132:365-386.
  • [84]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25:402-408.
  • [85]Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F: Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 2002, 3:RESEARCH0034.
  • [86]Obadia B, Lacour S, Doublet P, Baubichon-Cortay H, Cozzone AJ, Grangeasse C: Influence of tyrosine-kinase Wzc activity on colanic acid production in Escherichia coli K12 Cells. J Mol Biol 2007, 367:42-53.
  • [87]Rijavec M, Müller-Premru M, Zakotnik B, Žgur-Bertok D: Virulence factors and biofilm production among Escherichia coli strains causing bacteraemia of urinary tract origin. J Medical Microbiol 2008, 57:1329-1334.
  • [88]Miller JH: Experiments in molecular genetics: Assay of β-galactosidase. Cold Spring Harbor: CSH Laboratory Press; 1972:352-355.
  文献评价指标  
  下载次数:25次 浏览次数:17次