期刊论文详细信息
BMC Bioinformatics
TRaCE+: Ensemble inference of gene regulatory networks from transcriptional expression profiles of gene knock-out experiments
Methodology Article
Rudiyanto Gunawan1  S.M. Minhaz Ud-Dean1  Sandra Heise2  Steffen Klamt2 
[1] Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland;Swiss Institute of Bioinformatics, Lausanne, Switzerland;Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany;
关键词: Gene regulatory network;    Network inference;    Design of experiments;    Signed directed graph;    Transitive reduction;   
DOI  :  10.1186/s12859-016-1137-z
 received in 2016-03-01, accepted in 2016-06-12,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundThe inference of gene regulatory networks (GRNs) from transcriptional expression profiles is challenging, predominantly due to its underdetermined nature. One important consequence of underdetermination is the existence of many possible solutions to this inference. Our previously proposed ensemble inference algorithm TRaCE addressed this issue by inferring an ensemble of network directed graphs (digraphs) using differential gene expressions from gene knock-out (KO) experiments. However, TRaCE could not deal with the mode of the transcriptional regulations (activation or repression), an important feature of GRNs.ResultsIn this work, we developed a new algorithm called TRaCE+ for the inference of an ensemble of signed GRN digraphs from transcriptional expression data of gene KO experiments. The sign of the edges indicates whether the regulation is an activation (positive) or a repression (negative). TRaCE+ generates the upper and lower bounds of the ensemble, which define uncertain regulatory interactions that could not be verified by the data. As demonstrated in the case studies using Escherichia coli GRN and 100-gene gold-standard GRNs from DREAM 4 network inference challenge, by accounting for regulatory signs, TRaCE+ could extract more information from the KO data than TRaCE, leading to fewer uncertain edges. Importantly, iterating TRaCE+ with an optimal design of gene KOs could resolve the underdetermined issue of GRN inference in much fewer KO experiments than using TRaCE.ConclusionsTRaCE+ expands the applications of ensemble GRN inference strategy by accounting for the mode of the gene regulatory interactions. In comparison to TRaCE, TRaCE+ enables a better utilization of gene KO data, thereby reducing the cost of tackling underdetermined GRN inference. TRaCE+ subroutines for MATLAB are freely available at the following website: http://www.cabsel.ethz.ch/tools/trace.html.

【 授权许可】

CC BY   
© The Author(s). 2016

【 预 览 】
附件列表
Files Size Format View
RO202311108763439ZK.pdf 1843KB PDF download
Fig. 1 89KB Image download
Fig. 1 347KB Image download
Fig. 14 165KB Image download
Fig. 3 424KB Image download
Fig. 15 98KB Image download
Fig. 1 294KB Image download
Fig. 16 216KB Image download
12888_2023_5206_Article_IEq1.gif 1KB Image download
Fig. 17 99KB Image download
12888_2023_5206_Article_IEq3.gif 1KB Image download
Fig. 18 701KB Image download
12951_2015_155_Article_IEq69.gif 1KB Image download
MediaObjects/40249_2023_1142_MOESM1_ESM.docx 16KB Other download
Fig. 4 431KB Image download
Fig. 6 993KB Image download
Fig. 3 257KB Image download
MediaObjects/13049_2023_1131_MOESM3_ESM.mp4 884KB Other download
12951_2017_255_Article_IEq45.gif 1KB Image download
Fig. 19 120KB Image download
Fig. 1 4104KB Image download
MediaObjects/41408_2023_927_MOESM4_ESM.tif 7017KB Other download
Fig. 5 4247KB Image download
Fig. 7 3820KB Image download
MediaObjects/41021_2023_284_MOESM1_ESM.pdf 242KB PDF download
Fig. 2 2313KB Image download
Fig. 10 58KB Image download
12951_2015_155_Article_IEq70.gif 1KB Image download
Fig. 3 603KB Image download
【 图 表 】

Fig. 3

12951_2015_155_Article_IEq70.gif

Fig. 10

Fig. 2

Fig. 7

Fig. 5

Fig. 1

Fig. 19

12951_2017_255_Article_IEq45.gif

Fig. 3

Fig. 6

Fig. 4

12951_2015_155_Article_IEq69.gif

Fig. 18

12888_2023_5206_Article_IEq3.gif

Fig. 17

12888_2023_5206_Article_IEq1.gif

Fig. 16

Fig. 1

Fig. 15

Fig. 3

Fig. 14

Fig. 1

Fig. 1

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  文献评价指标  
  下载次数:6次 浏览次数:0次