期刊论文详细信息
BMC Bioinformatics
TRaCE+: Ensemble inference of gene regulatory networks from transcriptional expression profiles of gene knock-out experiments
Methodology Article
Rudiyanto Gunawan1  S.M. Minhaz Ud-Dean1  Sandra Heise2  Steffen Klamt2 
[1] Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland;Swiss Institute of Bioinformatics, Lausanne, Switzerland;Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany;
关键词: Gene regulatory network;    Network inference;    Design of experiments;    Signed directed graph;    Transitive reduction;   
DOI  :  10.1186/s12859-016-1137-z
 received in 2016-03-01, accepted in 2016-06-12,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundThe inference of gene regulatory networks (GRNs) from transcriptional expression profiles is challenging, predominantly due to its underdetermined nature. One important consequence of underdetermination is the existence of many possible solutions to this inference. Our previously proposed ensemble inference algorithm TRaCE addressed this issue by inferring an ensemble of network directed graphs (digraphs) using differential gene expressions from gene knock-out (KO) experiments. However, TRaCE could not deal with the mode of the transcriptional regulations (activation or repression), an important feature of GRNs.ResultsIn this work, we developed a new algorithm called TRaCE+ for the inference of an ensemble of signed GRN digraphs from transcriptional expression data of gene KO experiments. The sign of the edges indicates whether the regulation is an activation (positive) or a repression (negative). TRaCE+ generates the upper and lower bounds of the ensemble, which define uncertain regulatory interactions that could not be verified by the data. As demonstrated in the case studies using Escherichia coli GRN and 100-gene gold-standard GRNs from DREAM 4 network inference challenge, by accounting for regulatory signs, TRaCE+ could extract more information from the KO data than TRaCE, leading to fewer uncertain edges. Importantly, iterating TRaCE+ with an optimal design of gene KOs could resolve the underdetermined issue of GRN inference in much fewer KO experiments than using TRaCE.ConclusionsTRaCE+ expands the applications of ensemble GRN inference strategy by accounting for the mode of the gene regulatory interactions. In comparison to TRaCE, TRaCE+ enables a better utilization of gene KO data, thereby reducing the cost of tackling underdetermined GRN inference. TRaCE+ subroutines for MATLAB are freely available at the following website: http://www.cabsel.ethz.ch/tools/trace.html.

【 授权许可】

CC BY   
© The Author(s). 2016

【 预 览 】
附件列表
Files Size Format View
RO202311093338981ZK.pdf 1843KB PDF download
12864_2017_3783_Article_IEq3.gif 1KB Image download
12864_2016_3098_Article_IEq39.gif 1KB Image download
12864_2017_3604_Article_IEq3.gif 1KB Image download
12864_2017_4309_Article_IEq13.gif 1KB Image download
12864_2017_3604_Article_IEq4.gif 1KB Image download
12864_2017_3604_Article_IEq5.gif 1KB Image download
12864_2016_3426_Article_IEq2.gif 1KB Image download
12864_2016_2443_Article_IEq13.gif 1KB Image download
12864_2016_2443_Article_IEq14.gif 1KB Image download
12864_2015_2055_Article_IEq66.gif 1KB Image download
12864_2016_2443_Article_IEq15.gif 1KB Image download
12864_2017_4025_Article_IEq4.gif 1KB Image download
12864_2017_3500_Article_IEq12.gif 1KB Image download
12864_2017_4025_Article_IEq5.gif 1KB Image download
12864_2016_3440_Article_IEq28.gif 1KB Image download
12864_2016_3440_Article_IEq29.gif 1KB Image download
12864_2015_2198_Article_IEq46.gif 1KB Image download
12864_2016_3440_Article_IEq30.gif 1KB Image download
12864_2015_2198_Article_IEq48.gif 1KB Image download
12864_2017_4020_Article_IEq37.gif 1KB Image download
12864_2017_4020_Article_IEq38.gif 1KB Image download
12864_2016_3098_Article_IEq45.gif 1KB Image download
12864_2017_4020_Article_IEq39.gif 1KB Image download
12864_2016_2821_Article_IEq31.gif 1KB Image download
12864_2017_4130_Article_IEq11.gif 1KB Image download
12864_2017_4128_Article_IEq4.gif 1KB Image download
12864_2017_4130_Article_IEq12.gif 1KB Image download
12864_2015_2055_Article_IEq69.gif 1KB Image download
【 图 表 】

12864_2015_2055_Article_IEq69.gif

12864_2017_4130_Article_IEq12.gif

12864_2017_4128_Article_IEq4.gif

12864_2017_4130_Article_IEq11.gif

12864_2016_2821_Article_IEq31.gif

12864_2017_4020_Article_IEq39.gif

12864_2016_3098_Article_IEq45.gif

12864_2017_4020_Article_IEq38.gif

12864_2017_4020_Article_IEq37.gif

12864_2015_2198_Article_IEq48.gif

12864_2016_3440_Article_IEq30.gif

12864_2015_2198_Article_IEq46.gif

12864_2016_3440_Article_IEq29.gif

12864_2016_3440_Article_IEq28.gif

12864_2017_4025_Article_IEq5.gif

12864_2017_3500_Article_IEq12.gif

12864_2017_4025_Article_IEq4.gif

12864_2016_2443_Article_IEq15.gif

12864_2015_2055_Article_IEq66.gif

12864_2016_2443_Article_IEq14.gif

12864_2016_2443_Article_IEq13.gif

12864_2016_3426_Article_IEq2.gif

12864_2017_3604_Article_IEq5.gif

12864_2017_3604_Article_IEq4.gif

12864_2017_4309_Article_IEq13.gif

12864_2017_3604_Article_IEq3.gif

12864_2016_3098_Article_IEq39.gif

12864_2017_3783_Article_IEq3.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  文献评价指标  
  下载次数:4次 浏览次数:1次