期刊论文详细信息
BMC Systems Biology
Dynamic modelling of microRNA regulation during mesenchymal stem cell differentiation
Everardus J van Zoelen1  Reinhard Guthke2  Peter Kupfer2  Ana M Sotoca1  Michael Weber2 
[1] Department of Cell and Applied Biology, Radboud University, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands;Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Beutenbergstr. 11a, 07745 Jena, Germany
关键词: Chondrogenesis;    Mesenchymal stem cells;    MicroRNA;    NetGenerator;    Network inference;    Gene regulatory network;   
Others  :  1141815
DOI  :  10.1186/1752-0509-7-124
 received in 2013-03-04, accepted in 2013-10-30,  发布年份 2013
PDF
【 摘 要 】

Background

Network inference from gene expression data is a typical approach to reconstruct gene regulatory networks. During chondrogenic differentiation of human mesenchymal stem cells (hMSCs), a complex transcriptional network is active and regulates the temporal differentiation progress. As modulators of transcriptional regulation, microRNAs (miRNAs) play a critical role in stem cell differentiation. Integrated network inference aimes at determining interrelations between miRNAs and mRNAs on the basis of expression data as well as miRNA target predictions. We applied the NetGenerator tool in order to infer an integrated gene regulatory network.

Results

Time series experiments were performed to measure mRNA and miRNA abundances of TGF-beta1+BMP2 stimulated hMSCs. Network nodes were identified by analysing temporal expression changes, miRNA target gene predictions, time series correlation and literature knowledge. Network inference was performed using NetGenerator to reconstruct a dynamical regulatory model based on the measured data and prior knowledge. The resulting model is robust against noise and shows an optimal trade-off between fitting precision and inclusion of prior knowledge. It predicts the influence of miRNAs on the expression of chondrogenic marker genes and therefore proposes novel regulatory relations in differentiation control. By analysing the inferred network, we identified a previously unknown regulatory effect of miR-524-5p on the expression of the transcription factor SOX9 and the chondrogenic marker genes COL2A1, ACAN and COL10A1.

Conclusions

Genome-wide exploration of miRNA-mRNA regulatory relationships is a reasonable approach to identify miRNAs which have so far not been associated with the investigated differentiation process. The NetGenerator tool is able to identify valid gene regulatory networks on the basis of miRNA and mRNA time series data.

【 授权许可】

   
2013 Weber et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327143514190.pdf 1081KB PDF download
Figure 5. 38KB Image download
Figure 4. 97KB Image download
Figure 3. 61KB Image download
Figure 2. 45KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R: Gene regulatory network inference: data integration in dynamic models-a review. BioSystems 2009, 96:86-103.
  • [2]Goutsias J, Lee NH: Computational and experimental approaches for modeling gene regulatory networks. Curr Pharm Des 2007, 13(14):1415-1436.
  • [3]Hecker M, Goertsches RH, Engelmann R, Thiesen HJ, Guthke R: Integrative modeling of transcriptional regulation in response to antirheumatic therapy. BMC Bioinformatics 2009, 10:262. BioMed Central Full Text
  • [4]Vlaic S, Schmidt-Heck W, Matz-Soja M, Marbach E, Linde J, Meyer-Baese A, Zellmer S, Guthke R, Gebhardt R: The extended TILAR approach: a novel tool for dynamic modeling of the transcription factor network regulating the adaption to in vitro cultivation of murine hepatocytes. BMC Syst Biol 2012, 6:147. BioMed Central Full Text
  • [5]Kaleta C, Gohler A, Schuster S, Jahreis K, Guthke R, Nikolajewa S: Integrative inference of gene-regulatory networks in Escherichia coli using information theoretic concepts and sequence analysis. BMC Syst Biol 2010, 4:116. BioMed Central Full Text
  • [6]Guthke R, Möller U, Thies F, Töpfer S, Hoffmann M: Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection. Bioinformatics 2005, 21:1626-1634.
  • [7]Linde J, Wilson D, Hube B, Guthke R: Regulatory network modelling of iron acquisition by a fungal pathogen in contact with epithelial cells. BMC Syst Biol 2010, 4:148. BioMed Central Full Text
  • [8]Piek E, Sleumer LS, van Someren E P, Heuver L, de Haan JR, de Grijs I, Gilissen C, Hendriks JM, van Ravestein-van Os RI, Bauerschmidt S, Dechering KJ, van Zoelen EJ: Osteo-transcriptomics of human mesenchymal stem cells: accelerated gene expression and osteoblast differentiation induced by vitamin D reveals c-MYC as an enhancer of BMP2-induced osteogenesis. Bone 2010, 46(3):613-627.
  • [9]Sotoca AM, Weber M, van Zoelen E: Gene expression regulation underlying osteo-, adipo-, and chondro-genic lineage commitment of human mesenchymal stem cells. Med Adv Aging Regen Technol: Clin Tools Appl 2013, 7 Web:226-94.
  • [10]Lefebvre V, Behringer RR, Bi W, Murakami S, Huang W, de Crombrugghe B: Transcriptional mechanisms of chondrocyte differentiation. Matrix Biol 2000, 19(5):389-394.
  • [11]Hartmann C: Transcriptional networks controlling skeletal development. Curr Opin Genet Dev 2009, 19(5):437-443.
  • [12]Jin EJ, Lee SY, Choi YA, Jung JC, Bang OS, Kang SS: BMP-2-enhanced chondrogenesis involves p38 MAPK-mediated down-regulation of Wnt-7a pathway. Mol Cells 2006, 22(3):353-359.
  • [13]Blom A, van den Berg WB, van der Kraan PM: TGF-beta signaling in chondrocyte terminal differentiation and osteoarthritis: modulation and integration of signaling pathways through receptor-Smads. Osteoarthr Cartil 2009, 17(12):1539-1545.
  • [14]Ivey KN, Srivastava D: MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell 2010, 7:36-41.
  • [15]Guo L, Zhao RC, Wu Y: The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells. Exp Hematol 2011, 39(6):608-616.
  • [16]Guo H, Ingolia NT, Weissman JS, Bartel DP: Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 2010, 466(7308):835-840.
  • [17]Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: tools for microRNA genomics. Nucleic Acids Res 2008, 36:D154-D158.
  • [18]Friedman RC, Farh KK, Burge CB, Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009, 19:92-105.
  • [19]Croft L, Szklarczyk D, Jensen LJ, Gorodkin J: Multiple independent analyses reveal only transcription factors as an enriched functional class associated with microRNAs. BMC Syst Biol 2012, 6:90. BioMed Central Full Text
  • [20]Cui Q, Yu Z, Purisima EO, Wang E: Principles of microRNA regulation of a human cellular signaling network. Mol Syst Biol 2006, 2:46.
  • [21]Bisognin A, Sales G, Coppe A, Bortoluzzi S, Romualdi C: MAGIA2: from miRNA and genes expression data integrative analysis to microRNA-transcription factor mixed regulatory circuits (2012 update). Nucleic Acids Res 2012, 40(Web Server issue):13-21.
  • [22]Nam S, Li M, Choi K, Balch C, Kim S, Nephew KP: MicroRNA and mRNA integrated analysis (MMIA): a web tool for examining biological functions of microRNA expression. Nucleic Acids Res 2009, 37(Web Server issue):W356-W362.
  • [23]Huang GT, Athanassiou C, Benos PV: mirConnX: condition-specific mRNA-microRNA network integrator. Nucleic Acids Res 2011, 39(Web Server issue):W416-W423.
  • [24]Toepfer S, Guthke R, Driesch D, Woetzel D, Pfaff M: The NetGenerator algorithm: reconstruction of gene regulatory networks. In Knowledge Discovery and Emergent Complexity in Bioinformatics Lecture Notes in Computer Science Volume 4366. Springer; 2007:119-130. [http://link.springer.com/chapter/10.1007/978-3-540-71037-0_8 webcite]
  • [25]Weber M, Henkel SG, Vlaic S, Guthke R, van Zoelen EJ, Driesch D: Inference of dynamical gene-regulatory networks based on time-resolved multi-stimuli multi-experiment data applying NetGenerator V2.0. BMC Syst Biol 2013, 7:1. BioMed Central Full Text
  • [26]van Someren EP, Vaes BLT, Steegenga WT, Sijbers AM, Dechering KJ, Reinders MJT: Least absolute regression network analysis of the murine osteoblast differentiation network. Bioinformatics 2006, 22(4):477-484. [http://dx.doi.org/10.1093/bioinformatics/bti816 webcite]
  • [27]Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D: How to infer gene networks from expression profiles. Mol Syst Biol 2007, 3:78. [http://dx.doi.org/10.1038/msb4100120 webcite]
  • [28]FANTOM Consortium: The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line. Nat Genet 2009, 41(5):553-562. [http://dx.doi.org/10.1038/ng.375 webcite]
  • [29]Linde J, Hortschansky P, Fazius E, Brakhage AA, Guthke R, Haas H: Regulatory interactions for iron homeostasis in aspergillus fumigatus inferred by a systems biology approach. BMC Syst Biol 2012, 6:6. [http://dx.doi.org/10.1186/1752-0509-6-6 webcite] BioMed Central Full Text
  • [30]Ferrari F, Bortoluzzi S, Coppe A, Sirota A, Safran M, Shmoish M, Ferrari S, Lancet D, Danieli GA, Bicciato S: Novel definition files for human GeneChips based on GeneAnnot. BMC Bioinformatics 2007, 8:446. BioMed Central Full Text
  • [31]Vergoulis T, Vlachos IS, Alexiou P, Georgakilas G, Maragkakis M, Reczko M, Gerangelos S, Koziris N, Dalamagas T, Hatzigeorgiou AG: TarBase 6.0: capturing the exponential growth of miRNA targets with experimental support. Nucleic Acids Res 2012, 40(Database issue):D222-D229.
  • [32]Betel D, Wilson M, Gabow A, Marks DS, Sander C: The microRNA. org resource: targets and expression. Nucleic Acids Res 2008, 36(Database issue):D149-D153.
  • [33]Wang X, El Naqa IM: Prediction of both conserved and nonconserved microRNA targets in animals. Bioinformatics 2008, 24(3):325-332.
  • [34]Alexiou P, Maragkakis M, Papadopoulos GL, Reczko M, Hatzigeorgiou AG: Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics 2009, 25(23):3049-3055.
  • [35]Liu T, Papagiannakopoulos T, Puskar K, Qi S, Santiago F, Clay W, Lao K, Lee Y, Nelson SF, Kornblum HI, Doyle F, Petzold L, Shraiman B, Kosik KS: Detection of a microRNA signal in an in vivo expression set of mRNAs. PLoS ONE 2007, 2(8):e804.
  • [36]Tsang J, Zhu J, van Oudenaarden A: MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 2007, 26(5):753-767.
  • [37]de Crombrugghe B, Lefebvre V, Nakashima K: Regulatory mechanisms in the pathways of cartilage and bone formation. Curr Opin Cell Biol 2001, 13(6):721-727.
  • [38]Arnold MA, Kim Y, Czubryt MP, Phan D, McAnally J, Qi X, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN: MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell 2007, 12(3):377-389.
  • [39]Yuryev A, Mulyukov Z, Kotelnikova E, Maslov S, Egorov S, Nikitin A, Daraselia N, Mazo I: Automatic pathway building in biological association networks. BMC Bioinformatics 2006, 7:171. BioMed Central Full Text
  • [40]Lefebvre V, Huang W, Harley VR, Goodfellow PN, de Crombrugghe B: SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro alpha1(II) collagen gene. Mol Cell Biol 1997, 17(4):2336-2346.
  • [41]Leung VY, Gao B, Leung KK, Melhado IG, Wynn SL, Au TY, Dung NW, Lau JY, Mak AC, Chan D, Cheah KS: SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression. PLoS Genet 2011, 7(11):e1002356.
  • [42]Sekiya I, Tsuji K, Koopman P, Watanabe H, Yamada Y, Shinomiya K, Nifuji A, Noda M: SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6. J Biol Chem 2000, 275(15):10738-10744.
  • [43]Itoh S, Kanno S, Gai Z, Suemoto H, Kawakatsu M, Tanishima H, Morimoto Y, Nishioka K, Hatamura I, Yoshida M, Muragaki Y: Trps1 plays a pivotal role downstream of Gdf5 signaling in promoting chondrogenesis and apoptosis of ATDC5 cells. Genes Cells 2008, 13(4):355-363.
  • [44]Zhang Y, Xie RL, Gordon J, LeBlanc K, Stein JL, Lian JB, van Wijnen AJ, Stein GS: Control of mesenchymal lineage progression by microRNAs targeting skeletal gene regulators Trps1 and Runx2. J Biol Chem 2012, 287(26):21926-21935.
  • [45]Chen L, Zhang W, Yan W, Han L, Zhang K, Shi Z, Zhang J, Wang Y, Li Y, Yu S, Pu P, Jiang C, Jiang T, Kang C: The putative tumor suppressor miR-524-5p directly targets jagged-1 and hes-1 in glioma. Carcinogenesis 2012, 33(11):2276-2282.
  • [46]Pothof J, Verkaik NS, van IJcken W, Wiemer EA, Ta VT, van der Horst GT, Jaspers NG, van Gent DC, Hoeijmakers JH, Persengiev SP: MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response. EMBO J 2009, 28(14):2090-2099.
  • [47]R Development Core Team: R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2008. [http://www.R-project.org webcite]. [ISBN 3-900051-07-0]
  • [48]Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J: Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004, 5(10):R80. BioMed Central Full Text
  • [49]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4:249-264.
  • [50]Smyth GK: Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 2004, 3:Article3.
  文献评价指标  
  下载次数:20次 浏览次数:19次