期刊论文详细信息
Journal of Big Data
ASENN: attention-based selective embedding neural networks for road distress prediction
Research
Zhenyu Xu1  Qieshi Zhang1  Hamad AlJassmi2  Babitha Philip2  Luqman Ali3 
[1] CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, No. 1068 Xueyuan Avenue Shenzhen University Town, Shenzhen, China;Department of Civil and Environmental Engineering, United Arab Emirates University, 15551, Al Ain, United Arab Emirates;Emirates Center for Mobility Research (ECMR), United Arab Emirates University, 15551, Al Ain, United Arab Emirates;Emirates Center for Mobility Research (ECMR), United Arab Emirates University, 15551, Al Ain, United Arab Emirates;AI and Robotics Lab (Air-Lab), United Arab Emirates University, 15551, Al Ain, United Arab Emirates;College of IT, United Arab Emirates University, 15551, Al Ain, United Arab Emirates;
关键词: Pavement deterioration;    Tabular data;    Road distress parameters;    Prediction models;    Deep learning;   
DOI  :  10.1186/s40537-023-00845-x
 received in 2023-06-26, accepted in 2023-10-17,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

This study proposes an innovative neural network framework, ASENN (Attention-based Selective Embedding Neural Network), for the prediction of pavement deterioration. Considering the complexity and uncertainty associated with the pavement deterioration process, two fundamental frameworks, SEL (Selective Embedding Layer) and MDAL (Multi-Dropout Attention Layer), are combined to enhance feature abstraction and prediction accuracy. This approach is significant while analyzing the pavement deterioration process due to the high variability of the contributing deterioration factors. These factors, represented as tabular data, undergo filtering, embedding, and fusion stages in the SEL, to extract crucial features for an effective representation of pavement deterioration. Further, multiple attention-weighted combinations of raw data are obtained through the MDAL. Several SELs and MDALs were combined as basic cells and layered to form an ASENN. The experimental results demonstrate that the proposed model outperforms existing tabular models on four road distress parameter datasets corresponding to cracking, deflection, international roughness index, and rutting. The optimal number of cells was determined using different ablation settings. The results also show that the feature learning capabilities of the ASENN model improved as the number of cells increased; however, owing to the limited combination space of feature fields, extreme depths were not preferred. Furthermore, the ablation investigation demonstrated that MDAL can improve performance, particularly on the cracking dataset. Notably, compared with mainstream transformer models, ASENN requires significantly less storage and achieves faster execution speed.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202311108007495ZK.pdf 2560KB PDF download
MediaObjects/12888_2023_5232_MOESM1_ESM.docx 2566KB Other download
MediaObjects/13046_2022_2359_MOESM2_ESM.docx 15KB Other download
Fig. 2 1046KB Image download
Fig. 4 2985KB Image download
Fig. 1 378KB Image download
Table 2 149KB Table download
Fig. 6 393KB Image download
12888_2023_5299_Article_IEq2.gif 1KB Image download
12888_2023_5299_Article_IEq4.gif 1KB Image download
12888_2023_5299_Article_IEq5.gif 1KB Image download
MediaObjects/12888_2023_5299_MOESM1_ESM.xlsx 10KB Other download
MediaObjects/12888_2023_5299_MOESM2_ESM.xlsx 11KB Other download
Fig. 2 3736KB Image download
Fig. 5 64KB Image download
Fig. 6 46KB Image download
MediaObjects/12888_2023_5209_MOESM2_ESM.docx 29KB Other download
MediaObjects/12888_2023_5209_MOESM3_ESM.zip 248KB Package download
MediaObjects/12888_2023_5173_MOESM2_ESM.pdf 163KB PDF download
MediaObjects/40560_2023_692_MOESM7_ESM.docx 20KB Other download
MediaObjects/12888_2023_5209_MOESM4_ESM.docx 57KB Other download
Fig. 3 3312KB Image download
MediaObjects/12888_2023_5209_MOESM5_ESM.docx 16KB Other download
MediaObjects/40560_2023_692_MOESM9_ESM.docx 14KB Other download
MediaObjects/40560_2023_692_MOESM10_ESM.docx 19KB Other download
Fig. 1 630KB Image download
12936_2017_1885_Article_IEq1.gif 1KB Image download
Fig. 2 755KB Image download
MediaObjects/12974_2023_2927_MOESM7_ESM.docx 469KB Other download
MediaObjects/12888_2023_5173_MOESM3_ESM.pdf 159KB PDF download
Fig. 2 1527KB Image download
MediaObjects/12888_2023_5173_MOESM4_ESM.pdf 30KB PDF download
Fig. 2 98KB Image download
Fig. 10 427KB Image download
MediaObjects/42004_2023_1026_MOESM6_ESM.pdf 1159KB PDF download
Fig. 2 124KB Image download
Fig. 1 156KB Image download
MediaObjects/12888_2023_5213_MOESM1_ESM.pdf 485KB PDF download
Fig. 1 123KB Image download
MediaObjects/12951_2022_1747_MOESM1_ESM.pdf 1907KB PDF download
12867_2016_60_Article_IEq2.gif 1KB Image download
Fig. 9 45KB Image download
Fig. 2 937KB Image download
Fig. 4 2368KB Image download
12867_2016_60_Article_IEq1.gif 2KB Image download
12951_2015_155_Article_IEq4.gif 1KB Image download
Fig. 6 1766KB Image download
Fig. 3 1801KB Image download
Fig. 7 372KB Image download
Fig. 1 2201KB Image download
12936_2017_1932_Article_IEq15.gif 1KB Image download
12936_2017_2051_Article_IEq86.gif 1KB Image download
Fig. 5 598KB Image download
MediaObjects/41408_2023_928_MOESM1_ESM.docx 12KB Other download
Fig. 1 429KB Image download
MediaObjects/41408_2023_928_MOESM2_ESM.pdf 40KB PDF download
41512_2023_158_Article_IEq1.gif 1KB Image download
Fig. 7 1996KB Image download
41512_2023_158_Article_IEq2.gif 1KB Image download
Fig. 3 585KB Image download
Fig. 5 640KB Image download
MediaObjects/12894_2023_1313_MOESM4_ESM.xlsx 14KB Other download
12951_2017_323_Article_IEq1.gif 1KB Image download
Fig. 8 3631KB Image download
MediaObjects/13046_2023_2865_MOESM6_ESM.tif 2738KB Other download
41512_2023_158_Article_IEq9.gif 1KB Image download
12951_2015_155_Article_IEq6.gif 1KB Image download
Fig. 6 488KB Image download
Fig. 1 196KB Image download
Fig. 6 601KB Image download
Fig. 2 283KB Image download
Fig. 2 650KB Image download
Fig. 6 514KB Image download
【 图 表 】

Fig. 6

Fig. 2

Fig. 2

Fig. 6

Fig. 1

Fig. 6

12951_2015_155_Article_IEq6.gif

41512_2023_158_Article_IEq9.gif

Fig. 8

12951_2017_323_Article_IEq1.gif

Fig. 5

Fig. 3

41512_2023_158_Article_IEq2.gif

Fig. 7

41512_2023_158_Article_IEq1.gif

Fig. 1

Fig. 5

12936_2017_2051_Article_IEq86.gif

12936_2017_1932_Article_IEq15.gif

Fig. 1

Fig. 7

Fig. 3

Fig. 6

12951_2015_155_Article_IEq4.gif

12867_2016_60_Article_IEq1.gif

Fig. 4

Fig. 2

Fig. 9

12867_2016_60_Article_IEq2.gif

Fig. 1

Fig. 1

Fig. 2

Fig. 10

Fig. 2

Fig. 2

Fig. 2

12936_2017_1885_Article_IEq1.gif

Fig. 1

Fig. 3

Fig. 6

Fig. 5

Fig. 2

12888_2023_5299_Article_IEq5.gif

12888_2023_5299_Article_IEq4.gif

12888_2023_5299_Article_IEq2.gif

Fig. 6

Fig. 1

Fig. 4

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  文献评价指标  
  下载次数:12次 浏览次数:0次