期刊论文详细信息
BMC Medical Imaging
Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain
Research Article
Yide Ma1  Bingxin Yang1  Kun Zhan1  Jiuwen Zhang1  Min Yuan1 
[1] School of Information Science & Engineering, Lanzhou University, Tianshui South Road No.222, 730000, Lanzhou, China;
关键词: Compressed sensing;    Magnetic resonance imaging;    Uniform discrete curvelet transform;    Dictionary learning;    Augmented Lagrangian;   
DOI  :  10.1186/s12880-015-0065-0
 received in 2014-12-27, accepted in 2015-06-16,  发布年份 2015
来源: Springer
PDF
【 摘 要 】

BackgroundCompressed sensing(CS) has been well applied to speed up imaging by exploring image sparsity over predefined basis functions or learnt dictionary. Firstly, the sparse representation is generally obtained in a single transform domain by using wavelet-like methods, which cannot produce optimal sparsity considering sparsity, data adaptivity and computational complexity. Secondly, most state-of-the-art reconstruction models seldom consider composite regularization upon the various structural features of images and transform coefficients sub-bands. Therefore, these two points lead to high sampling rates for reconstructing high-quality images.MethodsIn this paper, an efficient composite sparsity structure is proposed. It learns adaptive dictionary from lowpass uniform discrete curvelet transform sub-band coefficients patches. Consistent with the sparsity structure, a novel composite regularization reconstruction model is developed to improve reconstruction results from highly undersampled k-space data. It is established via minimizing spatial image and lowpass sub-band coefficients total variation regularization, transform sub-bands coefficients l1 sparse regularization and constraining k-space measurements fidelity. A new augmented Lagrangian method is then introduced to optimize the reconstruction model. It updates representation coefficients of lowpass sub-band coefficients over dictionary, transform sub-bands coefficients and k-space measurements upon the ideas of constrained split augmented Lagrangian shrinkage algorithm.ResultsExperimental results on in vivo data show that the proposed method obtains high-quality reconstructed images. The reconstructed images exhibit the least aliasing artifacts and reconstruction error among current CS MRI methods.ConclusionsThe proposed sparsity structure can fit and provide hierarchical sparsity for magnetic resonance images simultaneously, bridging the gap between predefined sparse representation methods and explicit dictionary. The new augmented Lagrangian method provides solutions fully complying to the composite regularization reconstruction model with fast convergence speed.

【 授权许可】

Unknown   
© Yang et al.; licensee BioMed Central. 2015. This article is published under license to BioMed Central Ltd. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311107953634ZK.pdf 4144KB PDF download
Fig. 1 156KB Image download
MediaObjects/12888_2023_5213_MOESM1_ESM.pdf 485KB PDF download
Fig. 4 2368KB Image download
12867_2016_60_Article_IEq1.gif 2KB Image download
12936_2017_2014_Article_IEq78.gif 1KB Image download
12951_2015_155_Article_IEq4.gif 1KB Image download
Fig. 1 5136KB Image download
Fig. 6 1766KB Image download
Fig. 3 595KB Image download
Fig. 3 1801KB Image download
Fig. 4 183KB Image download
Fig. 7 372KB Image download
Fig. 1 206KB Image download
Fig. 1 2201KB Image download
12936_2017_2051_Article_IEq85.gif 1KB Image download
12936_2017_1932_Article_IEq15.gif 1KB Image download
12936_2017_2051_Article_IEq86.gif 1KB Image download
Fig. 5 598KB Image download
MediaObjects/41408_2023_928_MOESM1_ESM.docx 12KB Other download
Fig. 1 429KB Image download
MediaObjects/41408_2023_928_MOESM2_ESM.pdf 40KB PDF download
41512_2023_158_Article_IEq1.gif 1KB Image download
Fig. 7 1996KB Image download
41512_2023_158_Article_IEq2.gif 1KB Image download
Fig. 3 585KB Image download
Fig. 5 640KB Image download
MediaObjects/12894_2023_1313_MOESM4_ESM.xlsx 14KB Other download
12951_2017_323_Article_IEq1.gif 1KB Image download
Fig. 8 3631KB Image download
MediaObjects/13046_2023_2865_MOESM6_ESM.tif 2738KB Other download
41512_2023_158_Article_IEq9.gif 1KB Image download
12951_2015_155_Article_IEq6.gif 1KB Image download
Fig. 6 488KB Image download
【 图 表 】

Fig. 6

12951_2015_155_Article_IEq6.gif

41512_2023_158_Article_IEq9.gif

Fig. 8

12951_2017_323_Article_IEq1.gif

Fig. 5

Fig. 3

41512_2023_158_Article_IEq2.gif

Fig. 7

41512_2023_158_Article_IEq1.gif

Fig. 1

Fig. 5

12936_2017_2051_Article_IEq86.gif

12936_2017_1932_Article_IEq15.gif

12936_2017_2051_Article_IEq85.gif

Fig. 1

Fig. 1

Fig. 7

Fig. 4

Fig. 3

Fig. 3

Fig. 6

Fig. 1

12951_2015_155_Article_IEq4.gif

12936_2017_2014_Article_IEq78.gif

12867_2016_60_Article_IEq1.gif

Fig. 4

Fig. 1

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  文献评价指标  
  下载次数:2次 浏览次数:3次