期刊论文详细信息
BMC Medical Imaging
Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain
Research Article
Yide Ma1  Bingxin Yang1  Kun Zhan1  Jiuwen Zhang1  Min Yuan1 
[1] School of Information Science & Engineering, Lanzhou University, Tianshui South Road No.222, 730000, Lanzhou, China;
关键词: Compressed sensing;    Magnetic resonance imaging;    Uniform discrete curvelet transform;    Dictionary learning;    Augmented Lagrangian;   
DOI  :  10.1186/s12880-015-0065-0
 received in 2014-12-27, accepted in 2015-06-16,  发布年份 2015
来源: Springer
PDF
【 摘 要 】

BackgroundCompressed sensing(CS) has been well applied to speed up imaging by exploring image sparsity over predefined basis functions or learnt dictionary. Firstly, the sparse representation is generally obtained in a single transform domain by using wavelet-like methods, which cannot produce optimal sparsity considering sparsity, data adaptivity and computational complexity. Secondly, most state-of-the-art reconstruction models seldom consider composite regularization upon the various structural features of images and transform coefficients sub-bands. Therefore, these two points lead to high sampling rates for reconstructing high-quality images.MethodsIn this paper, an efficient composite sparsity structure is proposed. It learns adaptive dictionary from lowpass uniform discrete curvelet transform sub-band coefficients patches. Consistent with the sparsity structure, a novel composite regularization reconstruction model is developed to improve reconstruction results from highly undersampled k-space data. It is established via minimizing spatial image and lowpass sub-band coefficients total variation regularization, transform sub-bands coefficients l1 sparse regularization and constraining k-space measurements fidelity. A new augmented Lagrangian method is then introduced to optimize the reconstruction model. It updates representation coefficients of lowpass sub-band coefficients over dictionary, transform sub-bands coefficients and k-space measurements upon the ideas of constrained split augmented Lagrangian shrinkage algorithm.ResultsExperimental results on in vivo data show that the proposed method obtains high-quality reconstructed images. The reconstructed images exhibit the least aliasing artifacts and reconstruction error among current CS MRI methods.ConclusionsThe proposed sparsity structure can fit and provide hierarchical sparsity for magnetic resonance images simultaneously, bridging the gap between predefined sparse representation methods and explicit dictionary. The new augmented Lagrangian method provides solutions fully complying to the composite regularization reconstruction model with fast convergence speed.

【 授权许可】

Unknown   
© Yang et al.; licensee BioMed Central. 2015. This article is published under license to BioMed Central Ltd. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311092733642ZK.pdf 4144KB PDF download
12864_2017_3487_Article_IEq21.gif 1KB Image download
12888_2016_877_Article_IEq16.gif 1KB Image download
12888_2016_877_Article_IEq18.gif 1KB Image download
12888_2016_877_Article_IEq19.gif 1KB Image download
12864_2016_3353_Article_IEq29.gif 1KB Image download
12864_2015_2129_Article_IEq9.gif 1KB Image download
12864_2016_2913_Article_IEq23.gif 1KB Image download
12864_2017_3605_Article_IEq1.gif 1KB Image download
12864_2015_2129_Article_IEq12.gif 1KB Image download
12894_2016_184_Article_IEq2.gif 1KB Image download
12864_2017_3733_Article_IEq35.gif 1KB Image download
12864_2017_3733_Article_IEq36.gif 1KB Image download
12864_2015_1944_Article_IEq7.gif 1KB Image download
12864_2015_2297_Article_IEq4.gif 1KB Image download
12864_2017_3733_Article_IEq39.gif 1KB Image download
12864_2017_3920_Article_IEq5.gif 1KB Image download
12864_2015_2129_Article_IEq33.gif 1KB Image download
12864_2015_2242_Article_IEq1.gif 1KB Image download
12864_2015_2199_Article_IEq12.gif 1KB Image download
12864_2017_3777_Article_IEq5.gif 1KB Image download
12864_2015_2199_Article_IEq14.gif 1KB Image download
12864_2017_4132_Article_IEq33.gif 1KB Image download
12864_2017_4020_Article_IEq11.gif 1KB Image download
12864_2017_3521_Article_IEq2.gif 1KB Image download
12864_2017_3990_Article_IEq18.gif 1KB Image download
12864_2017_3733_Article_IEq50.gif 1KB Image download
12864_2017_3781_Article_IEq6.gif 1KB Image download
12864_2017_3809_Article_IEq5.gif 1KB Image download
12864_2017_4316_Article_IEq2.gif 1KB Image download
12864_2017_3609_Article_IEq6.gif 1KB Image download
12888_2015_697_Article_IEq1.gif 1KB Image download
12864_2017_3492_Article_IEq11.gif 1KB Image download
12864_2017_3609_Article_IEq8.gif 1KB Image download
【 图 表 】

12864_2017_3609_Article_IEq8.gif

12864_2017_3492_Article_IEq11.gif

12888_2015_697_Article_IEq1.gif

12864_2017_3609_Article_IEq6.gif

12864_2017_4316_Article_IEq2.gif

12864_2017_3809_Article_IEq5.gif

12864_2017_3781_Article_IEq6.gif

12864_2017_3733_Article_IEq50.gif

12864_2017_3990_Article_IEq18.gif

12864_2017_3521_Article_IEq2.gif

12864_2017_4020_Article_IEq11.gif

12864_2017_4132_Article_IEq33.gif

12864_2015_2199_Article_IEq14.gif

12864_2017_3777_Article_IEq5.gif

12864_2015_2199_Article_IEq12.gif

12864_2015_2242_Article_IEq1.gif

12864_2015_2129_Article_IEq33.gif

12864_2017_3920_Article_IEq5.gif

12864_2017_3733_Article_IEq39.gif

12864_2015_2297_Article_IEq4.gif

12864_2015_1944_Article_IEq7.gif

12864_2017_3733_Article_IEq36.gif

12864_2017_3733_Article_IEq35.gif

12894_2016_184_Article_IEq2.gif

12864_2015_2129_Article_IEq12.gif

12864_2017_3605_Article_IEq1.gif

12864_2016_2913_Article_IEq23.gif

12864_2015_2129_Article_IEq9.gif

12864_2016_3353_Article_IEq29.gif

12888_2016_877_Article_IEq19.gif

12888_2016_877_Article_IEq18.gif

12888_2016_877_Article_IEq16.gif

12864_2017_3487_Article_IEq21.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  文献评价指标  
  下载次数:3次 浏览次数:3次