期刊论文详细信息
BMC Medical Imaging
Local sparsity enhanced compressed sensing magnetic resonance imaging in uniform discrete curvelet domain
Kun Zhan1  Jiuwen Zhang1  Yide Ma1  Min Yuan1  Bingxin Yang1 
[1] School of Information Science & Engineering, Lanzhou University, Tianshui South Road No.222, Lanzhou 730000, China
关键词: Augmented Lagrangian;    Dictionary learning;    Uniform discrete curvelet transform;    Magnetic resonance imaging;    Compressed sensing;   
Others  :  1222836
DOI  :  10.1186/s12880-015-0065-0
 received in 2014-12-27, accepted in 2015-06-16,  发布年份 2015
PDF
【 摘 要 】

Background

Compressed sensing(CS) has been well applied to speed up imaging by exploring image sparsity over predefined basis functions or learnt dictionary. Firstly, the sparse representation is generally obtained in a single transform domain by using wavelet-like methods, which cannot produce optimal sparsity considering sparsity, data adaptivity and computational complexity. Secondly, most state-of-the-art reconstruction models seldom consider composite regularization upon the various structural features of images and transform coefficients sub-bands. Therefore, these two points lead to high sampling rates for reconstructing high-quality images.

Methods

In this paper, an efficient composite sparsity structure is proposed. It learns adaptive dictionary from lowpass uniform discrete curvelet transform sub-band coefficients patches. Consistent with the sparsity structure, a novel composite regularization reconstruction model is developed to improve reconstruction results from highly undersampled k-space data. It is established via minimizing spatial image and lowpass sub-band coefficients total variation regularization, transform sub-bands coefficients l1sparse regularization and constraining k-space measurements fidelity. A new augmented Lagrangian method is then introduced to optimize the reconstruction model. It updates representation coefficients of lowpass sub-band coefficients over dictionary, transform sub-bands coefficients and k-space measurements upon the ideas of constrained split augmented Lagrangian shrinkage algorithm.

Results

Experimental results on in vivo data show that the proposed method obtains high-quality reconstructed images. The reconstructed images exhibit the least aliasing artifacts and reconstruction error among current CS MRI methods.

Conclusions

The proposed sparsity structure can fit and provide hierarchical sparsity for magnetic resonance images simultaneously, bridging the gap between predefined sparse representation methods and explicit dictionary. The new augmented Lagrangian method provides solutions fully complying to the composite regularization reconstruction model with fast convergence speed.

【 授权许可】

   
2015 Yang et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150828021516841.pdf 2472KB PDF download
Fig. 10. 31KB Image download
Fig. 9. 37KB Image download
Fig. 8. 34KB Image download
Fig. 7. 48KB Image download
Fig. 6. 33KB Image download
Fig. 5. 42KB Image download
Fig. 4. 19KB Image download
Fig. 3. 53KB Image download
Fig. 2. 39KB Image download
Fig. 1. 18KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

Fig. 10.

【 参考文献 】
  • [1]Donoho DL. Compressed sensing. Inform Theory IEEE Trans. 2006; 52(4):1289-306.
  • [2]Candès EJ, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. Inform Theory IEEE Trans. 2006; 52(2):489-509.
  • [3]Baraniuk R. Compressive sensing. IEEE Signal Process Mag. 2007; 24(4):118-21.
  • [4]Lustig M, Donoho D, Pauly JM. Sparse mri: The application of compressed sensing for rapid mr imaging. Magn Reson Med. 2007; 58(6):1182-95.
  • [5]Lustig M, Donoho DL, Santos JM, Pauly JM. Compressed sensing mri. Signal Process Mag IEEE. 2008; 25(2):72-82.
  • [6]Chen Y, Ye X, Huang F. A novel method and fast algorithm for mr image reconstruction with significantly under-sampled data. Inverse Probl Imaging. 2010; 4(2):223-40.
  • [7]Santos JM, Cunningham CH, Lustig M, Hargreaves BA, Hu BS, Nishimura DG, Pauly JM. Single breath-hold whole-heart mra using variable-density spirals at 3t. Magn Reson Med. 2006; 55(2):371-9.
  • [8]Haldar JP, Hernando D, Liang ZP. Compressed-sensing mri with random encoding. Med Imaging IEEE Trans. 2011; 30(4):893-903.
  • [9]Huang J, Yang F. Compressed magnetic resonance imaging based on wavelet sparsity and nonlocal total variation. Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium On. IEEE, Barcelona; 2012.
  • [10]Lu Y, Do MN. A new contourlet transform with sharp frequency localization. Image Processing, 2006 IEEE International Conference On. IEEE, Atlanta, GA; 2006.
  • [11]Qu X, Zhang W, Guo D, Cai C, Cai S, Chen Z. Iterative thresholding compressed sensing mri based on contourlet transform. Inverse Probl Sci Eng. 2010; 18(6):737-58.
  • [12]Candes E, Demanet L, Donoho D, Ying L. Fast discrete curvelet transforms. Multiscale Model Simul. 2006; 5(3):861-99.
  • [13]Ma J. Compressed sensing by inverse scale space and curvelet thresholding. Appl Math Comput. 2008; 206(2):980-8.
  • [14]Plonka G, Ma J. Curvelet-wavelet regularized split bregman iteration for compressed sensing. Int J Wavelets, Multiresolution Inform Process. 2011; 9(01):79-110.
  • [15]Lim WQ. The discrete shearlet transform: A new directional transform and compactly supported shearlet frames. Image Process IEEE Trans. 2010; 19(5):1166-1180.
  • [16]Qin J, Guo W. An efficient compressive sensing mr image reconstruction scheme. Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium On. IEEE, San Francisco, CA; 2013.
  • [17]Jung H, Sung K, Nayak KS, Kim EY, Ye JC. k-t focuss: A general compressed sensing framework for high resolution dynamic mri. Magn Reson Med. 2009; 61(1):103-16.
  • [18]Otazo R, Kim D, Axel L, Sodickson DK. Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion mri. Magn Reson Med. 2010; 64(3):767-76.
  • [19]Bilen C, Wang Y, Selesnick IW. High-speed compressed sensing reconstruction in dynamic parallel mri using augmented lagrangian and parallel processing. Emerg Select Topics Circuits Syst IEEE J. 2012; 2(3):370-9.
  • [20]Qu X, Cao X, Guo D, Hu C, Chen Z. Combined sparsifying transforms for compressed sensing mri. Electron Lett. 2010; 46(2):121-3.
  • [21]Huang J, Zhang S, Metaxas D. Efficient mr image reconstruction for compressed mr imaging. Med Image Anal. 2011; 15(5):670-9.
  • [22]Lewicki MS, Sejnowski TJ. Learning overcomplete representations. Neural Comput. 2000; 12(2):337-65.
  • [23]Rauhut H, Schnass K, Vandergheynst P. Compressed sensing and redundant dictionaries. Inform Theory IEEE Trans. 2008; 54(5):2210-19.
  • [24]Mairal J, Sapiro G, Elad M. Multiscale sparse image representationwith learned dictionaries. Image Processing, 2007. ICIP 2007. IEEE International Conference On. IEEE, San Antonio, TX; 2007.
  • [25]Rubinstein R, Zibulevsky M, Elad M. Double sparsity: Learning sparse dictionaries for sparse signal approximation. Signal Process IEEE Trans. 2010; 58(3):1553-64.
  • [26]Dabov K, Foi A, Katkovnik V, Egiazarian K. Image denoising by sparse 3-d transform-domain collaborative filtering. Image Process IEEE Trans. 2007; 16(8):2080-95.
  • [27]Adluru G, Tasdizen T, Schabel MC, DiBella EV. Reconstruction of 3d dynamic contrast-enhanced magnetic resonance imaging using nonlocal means. J Magn Reson Imaging. 2010; 32(5):1217-27.
  • [28]Fang S, Ying K, Zhao L, Cheng J. Coherence regularization for sense reconstruction with a nonlocal operator (cornol). Magn Reson Med. 2010; 64(5):1413-25.
  • [29]Liang D, Wang H, Chang Y, Ying L. Sensitivity encoding reconstruction with nonlocal total variation regularization. Magn Reson Med. 2011; 65(5):1384-92.
  • [30]Wong A, Mishra A, Fieguth P, Clausi DA. Sparse reconstruction of breast mri using homotopic minimization in a regional sparsified domain. Biomed Eng IEEE Trans. 2013; 60(3):743-52.
  • [31]Akçakaya M, Basha TA, Goddu B, Goepfert LA, Kissinger KV, Tarokh V, Manning WJ, Nezafat R. Low-dimensional-structure self-learning and thresholding: Regularization beyond compressed sensing for mri reconstruction. Magn Reson Med. 2011; 66(3):756-67.
  • [32]Qu X, Hou Y, Lam F, Guo D, Zhong J, Chen Z. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator. Med Image Anal. 2014; 18(6):843-56.
  • [33]Ma S, Yin W, Zhang Y, Chakraborty A. An efficient algorithm for compressed mr imaging using total variation and wavelets. Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference On. IEEE, Anchorage, AK; 2008.
  • [34]Chen C, Huang J. Compressive sensing mri with wavelet tree sparsity. Advances in Neural Information Processing Systems. IEEE, Beijing; 2012.
  • [35]Ravishankar S, Bresler Y. Mr image reconstruction from highly undersampled k-space data by dictionary learning. Med Imaging IEEE Trans. 2011; 30(5):1028-41.
  • [36]Qu X, Guo D, Ning B, Hou Y, Lin Y, Cai S, Chen Z. Undersampled mri reconstruction with patch-based directional wavelets. Magn Reson Imaging. 2012; 30(7):964-77.
  • [37]Ning B, Qu X, Guo D, Hu C, Chen Z. Magnetic resonance image reconstruction using trained geometric directions in 2d redundant wavelets domain and non-convex optimization. Magn Reson Imaging. 2013; 31(9):1611-22.
  • [38]Yang J, Zhang Y, Yin W. A fast alternating direction method for tvl1-l2 signal reconstruction from partial fourier data. Selected Topics Signal Process IEEE J. 2010; 4(2):288-97.
  • [39]Haldar J. Low-rank modeling of local k-space neighborhoods (loraks) for constrained mri. Med Imaging IEEE Trans. 2014; 33(3):668-81.
  • [40]Zhao F, Noll DC, Nielsen JF, Fessler JA. Separate magnitude and phase regularization via compressed sensing. Med Imaging IEEE Trans. 2012; 31(9):1713-23.
  • [41]Shin PJ, Larson PE, Ohliger MA, Elad M, Pauly JM, Vigneron DB, Lustig M. Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion. Magn Reson Med. 2013; 72(4):959-70.
  • [42]Lam F, Zhao B, Liu Y, Liang ZP, Weiner M, Schuff N. Accelerated fmri using low-rank model and sparsity constraints. In: Proc. Int. Soc. Magn. Reson. Med. Salt Lake City. p. 2013.
  • [43]Haldar J. Calibrationless partial fourier reconstruction of mr images with slowly-varying phase: A rank-deficient matrix recovery approach. In: Proc. ISMRM Workshop on Data Sampling & Image Reconstruction. Sedona. p. 2013.
  • [44]Jain P, Netrapalli P, Sanghavi S. Low-rank matrix completion using alternating minimization. In: Proceedings of the Forty-fifth Annual ACM Symposium on Theory of Computing. ACM. p. 2013. arXiv:1212.0467v1.
  • [45]Otazo R, Candès E, Sodickson DK. Low-rank plus sparse matrix decomposition for accelerated dynamic mri with separation of background and dynamic components. Magn Reson Med. 2015; 73(3):1125-36.
  • [46]Nguyen TT, Chauris H. Uniform discrete curvelet transform. Signal Process IEEE Trans. 2010; 58(7):3618-34.
  • [47]Afonso MV, Bioucas-Dias JM, Figueiredo MAT. An augmented lagrangian approach to the constrained optimization formulation of imaging inverse problems. Image Process IEEE Trans. 2011; 20(3):681-95.
  • [48]Yang J, Zhang Y. Alternating direction algorithms for l1 -problems in compressive sensing. SIAM J Sci Comput. 2011; 33(1):250-78.
  • [49]Esser E. Applications of lagrangian-based alternating direction methods and connections to split bregman. CAM Report. 2009; 9:31.
  • [50]Afonso MV, Bioucas-Dias JM, Figueiredo MA. Fast image recovery using variable splitting and constrained optimization. Image Process IEEE Trans. 2010; 19(9):2345-56.
  • [51]Natarajan BK. Sparse approximate solutions to linear systems. SIAM J Comput. 1995; 24(2):227-34.
  • [52]Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization. Signal Process Lett IEEE. 2007; 14(10):707-10.
  • [53]Aharon M, Elad M, Bruckstein A. k -svd: An algorithm for designing overcomplete dictionaries for sparse representation. Signal Process IEEE Trans. 2006; 54(11):4311-322.
  • [54]Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. Image Process IEEE Trans. 2006; 15(12):3736-45.
  • [55]Candes EJ, Donoho DL. Curvelets: A surprisingly effective nonadaptive representation for objects with edges. Stanford University, Technical report, DTIC Document Stanford, Calif; 2000.
  • [56]Do MN, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation. Image Process IEEE Trans. 2005; 14(12):2091-106.
  • [57]Da Cunha AL, Zhou J, Do MN. The nonsubsampled contourlet transform: theory, design, and applications. Image Process IEEE Trans. 2006; 15(10):3089-101.
  • [58]Candes EJ, Donoho DL. New tight frames of curvelets and optimal representations of objects with piecewise c2 singularities. Commun Pure Appl Math. 2004; 57(2):219-66.
  • [59]Eckstein J, Bertsekas DP. On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math Program. 1992; 55(1–3):293-318.
  • [60]Chambolle A. An algorithm for total variation minimization and applications. J Math Imaging Vis. 2004; 20(1–2):89-97.
  • [61]Qu G, Zhang D, Yan P. Information measure for performance of image fusion. Electron Lett. 2002; 38(7):313-5.
  • [62]Liang D, Liu B, Wang J, Ying L. Accelerating sense using compressed sensing. Magn Reson Med. 2009; 62(6):1574-1584.
  文献评价指标  
  下载次数:115次 浏览次数:27次