期刊论文详细信息
Cardiovascular Diabetology
Platelet hyperaggregability in high-fat fed rats: A role for intraplatelet reactive-oxygen species production
Original Investigation
Sisi Marcondes1  Edson Antunes1  Rafael P Morganti1  Priscila F Monteiro1  Marina C Calixto1  Maria E Lopes-Pires1  Maria A Delbin2  Angelina Zanesco2 
[1] Department of Pharmacology, Faculty of Medical Sciences, University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil;Department of Physical Education, Institute of Bioscience, UNESP, Rio Claro, Sao Paulo, Brazil;
关键词: Platelet aggregation;    Obesity;    Reactive-oxygen species;    Nitric oxide;    Cyclic GMP;    BAY 41-2272;   
DOI  :  10.1186/1475-2840-11-5
 received in 2011-12-02, accepted in 2012-01-16,  发布年份 2012
来源: Springer
PDF
【 摘 要 】

BackgroundAdiposity greatly increases the risk of atherothrombotic events, a pathological condition where a chronic state of oxidative stress is reported to play a major role. This study aimed to investigate the involvement of (NO)-soluble guanylyl cyclase (sGC) signaling pathway in the platelet dysfunction from high fat-fed (HFF) rats.MethodsMale Wistar rats were fed for 10 weeks with standard chow (SCD) or high-fat diet (HFD). ADP (10 μM)- and thrombin (100 mU/ml)-induced washed platelet aggregation were evaluated. Measurement of intracellular levels of ROS levels was carried out using flow cytometry. Cyclic GMP levels were evaluated using ELISA kits.ResultsHigh-fat fed rats exhibited significant increases in body weight, epididymal fat, fasting glucose levels and glucose intolerance compared with SCD group. Platelet aggregation induced by ADP (n = 8) and thrombin from HFD rats (n = 8) were significantly greater (P < 0.05) compared with SCD group. Platelet activation with ADP increased by 54% the intraplatelet ROS production in HFD group, as measured by flow cytometry (n = 6). N-acetylcysteine (NAC; 1 mM) and PEG-catalase (1000 U/ml) fully prevented the increased ROS production and platelet hyperaggregability in HFD group. The NO donors sodium nitroprusside (SNP; 10 μM) and SNAP (10 μM), as well as the NO-independent soluble guanylyl cyclase stimulator BAY 41-2272 (10 μM) inhibited the platelet aggregation in HFD group with lower efficacy (P < 0.05) compared with SCD group. The cGMP levels in response to these agents were also markedly lower in HFD group (P < 0.05). The prostacyclin analogue iloprost (1 μM) reduced platelet aggregation in HFD and SCD rats in a similar fashion (n = 4).ConclusionsMetabolic abnormalities as consequence of HFD cause platelet hyperaggregability involving enhanced intraplatelet ROS production and decreased NO bioavailability that appear to be accompanied by potential defects in the prosthetic haem group of soluble guanylyl cyclase.

【 授权许可】

Unknown   
© Monteiro et al; licensee BioMed Central Ltd. 2012. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311107714451ZK.pdf 457KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  文献评价指标  
  下载次数:3次 浏览次数:1次