BMC Nephrology | |
Temporal validation of the MMCD score to predict kidney replacement therapy and in-hospital mortality in COVID-19 patients | |
Research | |
Daniela Ponce1  Mônica Aparecida da Paula Sordi1  Claudio Moisés Valiense de Andrade2  Marcos André Gonçalves2  Polianna Delfino Pereira3  Magda Carvalho Pires4  Vivian Costa Morais de Assis5  Ana Carolina Pitanga dos Santos5  Manuela Furtado Sacioto5  João Victor Baroni Neves5  André Soares de Moura Costa6  Angélica Gomides dos Reis Gomes6  Luís César de Castro7  Natália da Cunha Severino Sampaio8  Bruno Porto Pessoa9  Flavia Maria Borges Vigil1,10  Felício Roberto Costa1,11  Euler Roberto Fernandes Manenti1,12  Luciane Kopittke1,13  Fernando Anschau1,13  Elayne Crestani Pereira1,14  Fernando Graça Aranha1,14  Rochele Mosmann Menezes1,15  Marcelo Carneiro1,15  Frederico Bartolazzi1,16  Silvia Ferreira Araújo1,17  Danyelle Romana Alves Rios1,18  Evelin Paola de Almeida Cenci1,19  Karen Brasil Ruschel1,19  Lucas Moyses Carvalho de Oliveira2,20  Letícia do Nascimento2,21  Joanna d’Arc Lyra Batista2,22  Vanessa das Graças José Ventura2,23  Katia de Paula Farah2,23  Milena Soriano Marcolino2,24  Maria Aparecida Camargos Bicalho2,25  Beatriz Figueiredo Lima2,26  Alzira de Oliveira Jorge2,27  Pedro Gibson Paraíso2,28  Genna Maira Santos Grizende2,29  Alisson Alves Asevedo3,30  Christiane Corrêa Rodrigues Cimini3,31  Gabriella Genta Aguiar3,32  | |
[1] Botucatu Medical School, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Av. Prof. Mário Rubens Guimarães Montenegro, Botucatu, Brazil;Computer Science Department, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, Brazil;Department of Internal Medicine, Medical School, Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 190, Belo Horizonte, Brazil;Institute for Health Technology Assessment (IATS/ CNPq), R. Ramiro Barcelos, 2359, Porto Alegre, Brazil;Department of Statistics, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Belo Horizonte, Brazil;Faculdade de Ciências Médicas de Minas Gerais, Al. Ezequiel Dias, 275, Belo Horizonte, Minas Gerais, Brazil;Hospitais da Rede Mater Dei, Av. Do Contorno, 9000, Belo Horizonte, Brazil;Hospital Bruno Born, Av. Benjamin Constant, 881, Lajeado, Brazil;Hospital Eduardo de Menezes, R. Dr. Cristiano Rezende, 2213, Belo Horizonte, Brazil;Hospital Júlia Kubitschek, Av. Professor Alfredo Balena, 190, Belo Horizonte, Brazil;Hospital Metropolitano Doutor Célio de Castro, R. Dona Luiza, 311, Belo Horizonte, Brazil;Hospital Metropolitano Odilon Behrens, R. Formiga, 50, Belo Horizonte, Brazil;Hospital Mãe de Deus, R. José de Alencar, 286, Porto Alegre, Brazil;Hospital Nossa Senhora da Conceição, Av. Francisco Trein, 326, Porto Alegre, Brazil;Hospital SOS Cárdio, Rod. SC-401, 121, Florianópolis, Brazil;Hospital Santa Cruz, R. Fernando Abott, 174, Santa Cruz Do Sul, Brazil;Hospital Santo Antônio, Pç. Dr. Márcio Carvalho Lopes Filho, 501, Curvelo, Brazil;Hospital Semper, Al. Ezequiel Dias, 389, Belo Horizonte, Brazil;Hospital São João de Deus (Fundação Geraldo Correa), R. Do Cobre, 800, Divinópolis, Brazil;Hospital Universitário Canoas, Av. Farroupilha, 8001, Canoas, Brazil;Hospital Universitário Ciências Médicas de Minas Gerais, R. Dos Aimorés, 2896, Belo Horizonte, Brazil;Hospital Universitário de Santa Maria, Av. Roraima, 1000, Prédio 22, Santa Maria, Brazil;Institute for Health Technology Assessment (IATS/ CNPq), R. Ramiro Barcelos, 2359, Porto Alegre, Brazil;Medical School, Universidade Federal da Fronteira Sul, SC-484 Km 02, Chapecó, Brazil;Medical School and University Hospital, Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 190, Belo Horizonte, Brazil;Medical School and University Hospital, Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 190, Belo Horizonte, Brazil;Department of Internal Medicine, Medical School, Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 190, Belo Horizonte, Brazil;Institute for Health Technology Assessment (IATS/ CNPq), R. Ramiro Barcelos, 2359, Porto Alegre, Brazil;Telehealth Center, University Hospital, Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 110, Belo Horizonte, Brazil;Medical School and University Hospital, Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 190, Belo Horizonte, Brazil;Hospital João XXIII, Av. Professor Alfredo Balena, 400, Belo Horizonte, Brazil;Medical School and University Hospital, Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 190, Belo Horizonte, Brazil;Hospital Metropolitano Odilon Behrens, R. Formiga, 50, Belo Horizonte, Brazil;Medical School and University Hospital, Universidade Federal de Minas Gerais, Av. Professor Alfredo Balena, 190, Belo Horizonte, Brazil;Hospital Risoleta Tolentino Neves, R. das Gabirobas, 01, Belo Horizonte, Brazil;Orizonti Instituto de Saúde E Longevidade, Av. José Do Patrocínio Pontes, 1355, Belo Horizonte, Brazil;Santa Casa de Misericórdia de Belo Horizonte, Av. Francisco Sales, 1111, Belo Horizonte, Brazil;Universidade Federal Dos Vales Do Jequitinhonha E Mucuri (UFVJM), R. Cruzeiro, 01., Teófilo Otoni, Minas Gerais, Brazil;Universidade Federal Dos Vales Do Jequitinhonha E Mucuri (UFVJM), R. Cruzeiro, 01., Teófilo Otoni, Minas Gerais, Brazil;Hospital Santa Rosália, R. Do Cruzeiro, 01, Teófilo Otoni, Brazil;Universidade José Do Rosário Vellano (UNIFENAS), R. Boaventura, 50, Belo Horizonte, Brazil; | |
关键词: COVID-19; Acute kidney injury; Kidney replacement therapy; Score predictive; Risk prediction; Mortality; | |
DOI : 10.1186/s12882-023-03341-9 | |
received in 2023-04-28, accepted in 2023-09-20, 发布年份 2023 | |
来源: Springer | |
【 摘 要 】
BackgroundAcute kidney injury has been described as a common complication in patients hospitalized with COVID-19, which may lead to the need for kidney replacement therapy (KRT) in its most severe forms. Our group developed and validated the MMCD score in Brazilian COVID-19 patients to predict KRT, which showed excellent performance using data from 2020. This study aimed to validate the MMCD score in a large cohort of patients hospitalized with COVID-19 in a different pandemic phase and assess its performance to predict in-hospital mortality.MethodsThis study is part of the “Brazilian COVID-19 Registry”, a retrospective observational cohort of consecutive patients hospitalized for laboratory-confirmed COVID-19 in 25 Brazilian hospitals between March 2021 and August 2022. The primary outcome was KRT during hospitalization and the secondary was in-hospital mortality. We also searched literature for other prediction models for KRT, to assess the results in our database. Performance was assessed using area under the receiving operator characteristic curve (AUROC) and the Brier score.ResultsA total of 9422 patients were included, 53.8% were men, with a median age of 59 (IQR 48–70) years old. The incidence of KRT was 8.8% and in-hospital mortality was 18.1%. The MMCD score had excellent discrimination and overall performance to predict KRT (AUROC: 0.916 [95% CI 0.909–0.924]; Brier score = 0.057). Despite the excellent discrimination and overall performance (AUROC: 0.922 [95% CI 0.914–0.929]; Brier score = 0.100), the calibration was not satisfactory concerning in-hospital mortality. A random forest model was applied in the database, with inferior performance to predict KRT requirement (AUROC: 0.71 [95% CI 0.69–0.73]).ConclusionThe MMCD score is not appropriate for in-hospital mortality but demonstrates an excellent predictive ability to predict KRT in COVID-19 patients. The instrument is low cost, objective, fast and accurate, and can contribute to supporting clinical decisions in the efficient allocation of assistance resources in patients with COVID-19.
【 授权许可】
CC BY
© BioMed Central Ltd., part of Springer Nature 2023
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311107531450ZK.pdf | 1484KB | download | |
Fig. 1 | 34KB | Image | download |
Fig. 3 | 748KB | Image | download |
Fig. 2 | 476KB | Image | download |
Fig. 1 | 302KB | Image | download |
Fig. 1 | 849KB | Image | download |
MediaObjects/13046_2023_2865_MOESM2_ESM.docx | 22KB | Other | download |
Fig. 5 | 2311KB | Image | download |
Fig. 4 | 756KB | Image | download |
【 图 表 】
Fig. 4
Fig. 5
Fig. 1
Fig. 1
Fig. 2
Fig. 3
Fig. 1
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]