期刊论文详细信息
BMC Genomics
iRDA: a new filter towards predictive, stable, and enriched candidate genes
Research Article
Hung-Ming Lai1  Kathleen K. Steinhöfel1  Andreas A. Albrecht2 
[1] Algorithms and Bioinformatics Research Group, Department of Informatics, King’s College London, Strand, WC2R 2LS, London, UK;School of Science and Technology, Middlesex University, Burroughs, NW4 4BT, London, UK;
关键词: Cancer phenotype prediction;    Feature selection and classification;    Microarray;    Prognosis gene signature;    Transcriptomic profiling;   
DOI  :  10.1186/s12864-015-2129-5
 received in 2015-04-09, accepted in 2015-10-22,  发布年份 2015
来源: Springer
PDF
【 摘 要 】

BackgroundGene expression profiling using high-throughput screening (HTS) technologies allows clinical researchers to find prognosis gene signatures that could better discriminate between different phenotypes and serve as potential biological markers in disease diagnoses. In recent years, many feature selection methods have been devised for finding such discriminative genes, and more recently information theoretic filters have also been introduced for capturing feature-to-class relevance and feature-to-feature correlations in microarray-based classification.MethodsIn this paper, we present and fully formulate a new multivariate filter, iRDA, for the discovery of HTS gene-expression candidate genes. The filter constitutes a four-step framework and includes feature relevance, feature redundancy, and feature interdependence in the context of feature-pairs. The method is based upon approximate Markov blankets, information theory, several heuristic search strategies with forward, backward and insertion phases, and the method is aiming at higher order gene interactions.ResultsTo show the strengths of iRDA, three performance measures, two evaluation schemes, two stability index sets, and the gene set enrichment analysis (GSEA) are all employed in our experimental studies. Its effectiveness has been validated by using seven well-known cancer gene-expression benchmarks and four other disease experiments, including a comparison to three popular information theoretic filters. In terms of classification performance, candidate genes selected by iRDA perform better than the sets discovered by the other three filters. Two stability measures indicate that iRDA is the most robust with the least variance. GSEA shows that iRDA produces more statistically enriched gene sets on five out of the six benchmark datasets.ConclusionsThrough the classification performance, the stability performance, and the enrichment analysis, iRDA is a promising filter to find predictive, stable, and enriched gene-expression candidate genes.

【 授权许可】

CC BY   
© Lai et al. 2015

【 预 览 】
附件列表
Files Size Format View
RO202311107092239ZK.pdf 2787KB PDF download
Fig. 9 1287KB Image download
Fig. 1 258KB Image download
12936_2017_1963_Article_IEq60.gif 1KB Image download
Fig. 8 780KB Image download
Fig. 3 2506KB Image download
12936_2016_1316_Article_IEq8.gif 1KB Image download
12951_2017_255_Article_IEq33.gif 1KB Image download
MediaObjects/12951_2023_2144_MOESM1_ESM.docx 15232KB Other download
12951_2017_255_Article_IEq34.gif 1KB Image download
12951_2015_155_Article_IEq53.gif 1KB Image download
MediaObjects/13046_2023_2843_MOESM2_ESM.docx 5319KB Other download
12951_2015_155_Article_IEq54.gif 1KB Image download
Fig. 2 159KB Image download
Fig. 1 191KB Image download
MediaObjects/40538_2023_474_MOESM8_ESM.xls 17KB Other download
Fig. 1 167KB Image download
MediaObjects/40538_2023_474_MOESM9_ESM.xlsx 13KB Other download
Fig. 2 1630KB Image download
12936_2017_1932_Article_IEq37.gif 1KB Image download
Fig. 1 442KB Image download
Fig. 3 379KB Image download
12936_2017_1963_Article_IEq63.gif 1KB Image download
Fig. 1 400KB Image download
Fig. 1 51KB Image download
Fig. 2 88KB Image download
Fig. 2 47KB Image download
Fig. 2 80KB Image download
12951_2017_255_Article_IEq36.gif 1KB Image download
Fig. 3 42KB Image download
12951_2015_155_Article_IEq56.gif 1KB Image download
Fig. 2 576KB Image download
MediaObjects/12888_2023_5265_MOESM1_ESM.xlsx 198KB Other download
Fig. 2 192KB Image download
12936_2017_2045_Article_IEq3.gif 1KB Image download
Fig. 5 969KB Image download
12936_2017_2045_Article_IEq5.gif 1KB Image download
【 图 表 】

12936_2017_2045_Article_IEq5.gif

Fig. 5

12936_2017_2045_Article_IEq3.gif

Fig. 2

Fig. 2

12951_2015_155_Article_IEq56.gif

Fig. 3

12951_2017_255_Article_IEq36.gif

Fig. 2

Fig. 2

Fig. 2

Fig. 1

Fig. 1

12936_2017_1963_Article_IEq63.gif

Fig. 3

Fig. 1

12936_2017_1932_Article_IEq37.gif

Fig. 2

Fig. 1

Fig. 1

Fig. 2

12951_2015_155_Article_IEq54.gif

12951_2015_155_Article_IEq53.gif

12951_2017_255_Article_IEq34.gif

12951_2017_255_Article_IEq33.gif

12936_2016_1316_Article_IEq8.gif

Fig. 3

Fig. 8

12936_2017_1963_Article_IEq60.gif

Fig. 1

Fig. 9

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  文献评价指标  
  下载次数:6次 浏览次数:2次