期刊论文详细信息
Journal of Big Data 卷:7
Group based emotion recognition from video sequence with hybrid optimization based recurrent fuzzy neural network
E. Vijay Kumar1  Velagapudi Sreenivas2  Varsha Namdeo2 
[1] Department EEE, SRK University;
[2] Department of Computer Science and Engineering, SRK University;
关键词: Group level emotion recognition;    Frames;    Face detection;    Feature extraction;    Feature selection and classification;   
DOI  :  10.1186/s40537-020-00326-5
来源: DOAJ
【 摘 要 】

Abstract Group-based emotion recognition (GER) is an interesting topic in both security and social area. In this paper, a GER with hybrid optimization based recurrent fuzzy neural network is proposed which is from video sequence. In our work, by utilizing the Neural Network the emotion recognition (ER) is performed from group of people. Initially, original video frames are taken as input and pre-process it from multi user video data. From this pre-processed image, the feature extraction is done by Multivariate Local Texture Pattern (MLTP), gray-level co-occurrence matrix (GLCM), and Local Energy based Shape Histogram (LESH). After extracting the features, certain features are selected using Modified Sea-lion optimization algorithm process. Finally, recurrent fuzzy neural network (RFNN) classifier based Social Ski-Driver (SSD) optimization algorithm is proposed for classification process, SSD is used for updating the weights in the RFNN. Python platform is utilized to implement this work and the performance of accuracy, sensitivity, specificity, recall and precision is evaluated with some existing techniques. The proposed method accuracy is 99.16%, recall is 99.33%, precision is 99%, sensitivity is 99.93% and specificity is 99% when compared with other deep learning techniques our proposed method attains good result.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次