Malaria Journal | |
Vector control with driving Y chromosomes: modelling the evolution of resistance | |
Research | |
Andrea Beaghton1  Pantelis John Beaghton1  Austin Burt1  | |
[1] Life Sciences, Imperial College, Silwood Park, Ascot, SL5 7PY, Berkshire, UK; | |
关键词: Malaria; Gene drive; Resistance; Anopheles gambiae; Vector control; Driving Y chromosome; Branching process; Resistance; | |
DOI : 10.1186/s12936-017-1932-7 | |
received in 2017-04-17, accepted in 2017-07-06, 发布年份 2017 | |
来源: Springer | |
【 摘 要 】
BackgroundThe introduction of new malaria control interventions has often led to the evolution of resistance, both of the parasite to new drugs and of the mosquito vector to new insecticides, compromising the efficacy of the interventions. Recent progress in molecular and population biology raises the possibility of new genetic-based interventions, and the potential for resistance to evolve against these should be considered. Here, population modelling is used to determine the main factors affecting the likelihood that resistance will evolve against a synthetic, nuclease-based driving Y chromosome that produces a male-biased sex ratio.MethodsA combination of deterministic differential equation models and stochastic analyses involving branching processes and Gillespie simulations is utilized to assess the probability that resistance evolves against a driving Y that otherwise is strong enough to eliminate the target population. The model considers resistance due to changes at the target site such that they are no longer cleaved by the nuclease, and due to trans-acting autosomal suppressor alleles.ResultsThe probability that resistance evolves increases with the mutation rate and the intrinsic rate of increase of the population, and decreases with the strength of drive and any pleiotropic fitness costs of the resistant allele. In seasonally varying environments, the time of release can also affect the probability of resistance evolving. Trans-acting suppressor alleles are more likely to suffer stochastic loss at low frequencies than target site resistant alleles.ConclusionsAs with any other intervention, there is a risk that resistance will evolve to new genetic approaches to vector control, and steps should be taken to minimize this probability. Two design features that should help in this regard are to reduce the rate at which resistant mutations arise, and to target sequences such that if they do arise, they impose a significant fitness cost on the mosquito.
【 授权许可】
CC BY
© The Author(s) 2017
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311106680995ZK.pdf | 1717KB | download | |
Fig. 1 | 849KB | Image | download |
Fig. 5 | 471KB | Image | download |
Fig. 1 | 247KB | Image | download |
Fig. 4 | 372KB | Image | download |
MediaObjects/13046_2020_1739_MOESM1_ESM.pdf | 221KB | download | |
MediaObjects/13046_2023_2851_MOESM8_ESM.docx | 44KB | Other | download |
Fig. 1 | 161KB | Image | download |
Table 2 | 149KB | Table | download |
MediaObjects/12888_2023_5290_MOESM1_ESM.docx | 17KB | Other | download |
12888_2023_5299_Article_IEq2.gif | 1KB | Image | download |
MediaObjects/12888_2023_5209_MOESM3_ESM.zip | 248KB | Package | download |
Fig. 2 | 98KB | Image | download |
MediaObjects/12902_2023_1437_MOESM1_ESM.docx | 31KB | Other | download |
12936_2017_2051_Article_IEq78.gif | 1KB | Image | download |
Fig. 2 | 1046KB | Image | download |
MediaObjects/12951_2022_1747_MOESM1_ESM.pdf | 1907KB | download | |
Fig. 9 | 45KB | Image | download |
12936_2017_1932_Article_IEq15.gif | 1KB | Image | download |
Fig. 5 | 598KB | Image | download |
Fig. 2 | 283KB | Image | download |
Fig. 6 | 514KB | Image | download |
350KB | Image | download | |
Fig. 9 | 519KB | Image | download |
MediaObjects/13046_2023_2865_MOESM10_ESM.jpg | 226KB | Other | download |
Fig. 1 | 1445KB | Image | download |
Fig. 7 | 354KB | Image | download |
Fig. 2 | 321KB | Image | download |
12951_2015_155_Article_IEq19.gif | 1KB | Image | download |
Fig. 2 | 804KB | Image | download |
12951_2017_270_Article_IEq7.gif | 1KB | Image | download |
13100_2023_302_Article_IEq2.gif | 1KB | Image | download |
Fig. 2 | 123KB | Image | download |
MediaObjects/13690_2023_1195_MOESM1_ESM.docx | 19KB | Other | download |
Fig. 2 | 582KB | Image | download |
Fig. 2 | 172KB | Image | download |
Fig. 3 | 336KB | Image | download |
Fig. 1 | 3761KB | Image | download |
Fig. 5 | 1277KB | Image | download |
12944_2023_1927_Article_IEq24.gif | 1KB | Image | download |
MediaObjects/13690_2023_1196_MOESM4_ESM.xlsx | 58KB | Other | download |
Fig. 1 | 88KB | Image | download |
Fig. 1 | 103KB | Image | download |
Fig. 1 | 552KB | Image | download |
Fig. 1 | 269KB | Image | download |
Fig. 1 | 420KB | Image | download |
12951_2017_297_Article_IEq1.gif | 1KB | Image | download |
Fig. 1 | 207KB | Image | download |
MediaObjects/13690_2023_1197_MOESM1_ESM.docx | 16KB | Other | download |
Fig. 2 | 204KB | Image | download |
MediaObjects/40249_2023_1146_MOESM11_ESM.xls | 516KB | Other | download |
MediaObjects/12888_2023_5208_MOESM1_ESM.docx | 7KB | Other | download |
12936_2017_1932_Article_IEq37.gif | 1KB | Image | download |
Fig. 3 | 379KB | Image | download |
MediaObjects/12888_2023_5265_MOESM2_ESM.docx | 14KB | Other | download |
Fig. 1 | 1829KB | Image | download |
Fig. 1 | 446KB | Image | download |
Fig. 3 | 683KB | Image | download |
Fig. 5 | 747KB | Image | download |
Fig. 10 | 1239KB | Image | download |
Fig. 1 | 690KB | Image | download |
Fig. 5 | 90KB | Image | download |
Fig. 6 | 118KB | Image | download |
MediaObjects/12947_2023_317_MOESM1_ESM.docx | 420KB | Other | download |
Fig. 2 | 2049KB | Image | download |
Fig. 3 | 1017KB | Image | download |
Fig. 2 | 101KB | Image | download |
Fig. 3 | 512KB | Image | download |
MediaObjects/41408_2023_930_MOESM4_ESM.docx | 22KB | Other | download |
MediaObjects/41408_2023_930_MOESM5_ESM.docx | 42KB | Other | download |
Fig. 11 | 260KB | Image | download |
12888_2023_5206_Article_IEq1.gif | 1KB | Image | download |
Fig. 2 | 2313KB | Image | download |
Fig. 10 | 58KB | Image | download |
12951_2015_155_Article_IEq70.gif | 1KB | Image | download |
Fig. 1 | 410KB | Image | download |
Fig. 3 | 360KB | Image | download |
12951_2015_155_Article_IEq72.gif | 1KB | Image | download |
12951_2015_155_Article_IEq73.gif | 1KB | Image | download |
Fig. 2 | 2578KB | Image | download |
12951_2015_155_Article_IEq75.gif | 1KB | Image | download |
MediaObjects/12944_2023_1936_MOESM6_ESM.pdf | 297KB | download | |
Fig. 4 | 603KB | Image | download |
MediaObjects/12888_2023_5220_MOESM1_ESM.docx | 69KB | Other | download |
Fig. 8 | 474KB | Image | download |
12951_2016_246_Article_IEq6.gif | 1KB | Image | download |
Fig. 6 | 1312KB | Image | download |
【 图 表 】
Fig. 6
12951_2016_246_Article_IEq6.gif
Fig. 8
Fig. 4
12951_2015_155_Article_IEq75.gif
Fig. 2
12951_2015_155_Article_IEq73.gif
12951_2015_155_Article_IEq72.gif
Fig. 3
Fig. 1
12951_2015_155_Article_IEq70.gif
Fig. 10
Fig. 2
12888_2023_5206_Article_IEq1.gif
Fig. 11
Fig. 3
Fig. 2
Fig. 3
Fig. 2
Fig. 6
Fig. 5
Fig. 1
Fig. 10
Fig. 5
Fig. 3
Fig. 1
Fig. 1
Fig. 3
12936_2017_1932_Article_IEq37.gif
Fig. 2
Fig. 1
12951_2017_297_Article_IEq1.gif
Fig. 1
Fig. 1
Fig. 1
Fig. 1
Fig. 1
12944_2023_1927_Article_IEq24.gif
Fig. 5
Fig. 1
Fig. 3
Fig. 2
Fig. 2
Fig. 2
13100_2023_302_Article_IEq2.gif
12951_2017_270_Article_IEq7.gif
Fig. 2
12951_2015_155_Article_IEq19.gif
Fig. 2
Fig. 7
Fig. 1
Fig. 9
Fig. 6
Fig. 2
Fig. 5
12936_2017_1932_Article_IEq15.gif
Fig. 9
Fig. 2
12936_2017_2051_Article_IEq78.gif
Fig. 2
12888_2023_5299_Article_IEq2.gif
Fig. 1
Fig. 4
Fig. 1
Fig. 5
Fig. 1
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]