期刊论文详细信息
BMC Bioinformatics
Statistical inference for time course RNA-Seq data using a negative binomial mixed-effect model
Methodology Article
Di Wu1  Jun S. Liu1  Ping Ma2  Wenxuan Zhong2  Xiaoxiao Sun2  David Dalpiaz3 
[1] Department of Statistics, Harvard University, One Oxford Street, 02138, Cambridge, USA;Department of Statistics, University of Georgia, 101 Cedar Street, 30602, Athens, USA;Department of Statistics, University of Illinois at Urbana-Champaign, 725 South Wright Street, 61820, Champaign, USA;
关键词: Differentially expressed gene;    Gene set enrichment;    Analysis of variance;    Smoothing spline;    Penalized likelihood;   
DOI  :  10.1186/s12859-016-1180-9
 received in 2016-03-03, accepted in 2016-08-11,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundAccurate identification of differentially expressed (DE) genes in time course RNA-Seq data is crucial for understanding the dynamics of transcriptional regulatory network. However, most of the available methods treat gene expressions at different time points as replicates and test the significance of the mean expression difference between treatments or conditions irrespective of time. They thus fail to identify many DE genes with different profiles across time. In this article, we propose a negative binomial mixed-effect model (NBMM) to identify DE genes in time course RNA-Seq data. In the NBMM, mean gene expression is characterized by a fixed effect, and time dependency is described by random effects. The NBMM is very flexible and can be fitted to both unreplicated and replicated time course RNA-Seq data via a penalized likelihood method. By comparing gene expression profiles over time, we further classify the DE genes into two subtypes to enhance the understanding of expression dynamics. A significance test for detecting DE genes is derived using a Kullback-Leibler distance ratio. Additionally, a significance test for gene sets is developed using a gene set score.ResultsSimulation analysis shows that the NBMM outperforms currently available methods for detecting DE genes and gene sets. Moreover, our real data analysis of fruit fly developmental time course RNA-Seq data demonstrates the NBMM identifies biologically relevant genes which are well justified by gene ontology analysis.ConclusionsThe proposed method is powerful and efficient to detect biologically relevant DE genes and gene sets in time course RNA-Seq data.

【 授权许可】

CC BY   
© The Author(s) 2016

【 预 览 】
附件列表
Files Size Format View
RO202311105328461ZK.pdf 1038KB PDF download
Fig. 2 223KB Image download
Fig. 2 326KB Image download
Table 1 87KB Table download
Fig. 3 191KB Image download
MediaObjects/41408_2023_931_MOESM1_ESM.docx 75KB Other download
Fig. 4 393KB Image download
Fig. 4 1257KB Image download
Fig. 1 2894KB Image download
Table 2 149KB Table download
40708_2023_205_Article_IEq12.gif 1KB Image download
MediaObjects/12888_2023_5290_MOESM1_ESM.docx 17KB Other download
Fig. 1 110KB Image download
MediaObjects/41408_2023_931_MOESM3_ESM.png 120KB Other download
Fig. 1 143KB Image download
Fig. 6 974KB Image download
MediaObjects/41408_2023_931_MOESM4_ESM.xlsx 45KB Other download
40708_2023_205_Article_IEq19.gif 1KB Image download
Fig. 1 723KB Image download
Fig. 5 246KB Image download
12936_2017_2051_Article_IEq71.gif 1KB Image download
Fig. 1 433KB Image download
【 图 表 】

Fig. 1

12936_2017_2051_Article_IEq71.gif

Fig. 5

Fig. 1

40708_2023_205_Article_IEq19.gif

Fig. 6

Fig. 1

Fig. 1

40708_2023_205_Article_IEq12.gif

Fig. 1

Fig. 4

Fig. 4

Fig. 3

Fig. 2

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  文献评价指标  
  下载次数:4次 浏览次数:3次