期刊论文详细信息
BMC Bioinformatics
DTWscore: differential expression and cell clustering analysis for time-series single-cell RNA-seq data
Methodology Article
Li Xu1  Nan Wang2  Zhuo Wang2  Shuilin Jin2  Deliang Wu2  Chiping Zhang2  Xiurui Zhang2  Guiyou Liu3  Yang Hu3  Qinghua Jiang3  Yadong Wang4 
[1] College of Computer Science and Technology, Harbin Engineering University, Harbin, Nantong Street, 150001, Heilongjiang, China;Department of Mathematics, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, West Dazhi Street, China;School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, West Dazhi Street, China;School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Nantong Street, 150001, Heilongjiang, China;
关键词: Single-cell RNA-seq;    Time-series data;    Dynamic time warping;   
DOI  :  10.1186/s12859-017-1647-3
 received in 2016-09-16, accepted in 2017-04-25,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundThe development of single-cell RNA sequencing has enabled profound discoveries in biology, ranging from the dissection of the composition of complex tissues to the identification of novel cell types and dynamics in some specialized cellular environments. However, the large-scale generation of single-cell RNA-seq (scRNA-seq) data collected at multiple time points remains a challenge to effective measurement gene expression patterns in transcriptome analysis.ResultsWe present an algorithm based on the Dynamic Time Warping score (DTWscore) combined with time-series data, that enables the detection of gene expression changes across scRNA-seq samples and recovery of potential cell types from complex mixtures of multiple cell types.ConclusionsThe DTWscore successfully classify cells of different types with the most highly variable genes from time-series scRNA-seq data. The study was confined to methods that are implemented and available within the R framework. Sample datasets and R packages are available at https://github.com/xiaoxiaoxier/DTWscore.

【 授权许可】

CC BY   
© The Author(s) 2017

【 预 览 】
附件列表
Files Size Format View
RO202311104542925ZK.pdf 1668KB PDF download
Fig. 3 42KB Image download
12951_2015_155_Article_IEq56.gif 1KB Image download
Fig. 1 1829KB Image download
Fig. 1 245KB Image download
12936_2017_2075_Article_IEq66.gif 1KB Image download
MediaObjects/13049_2023_1131_MOESM1_ESM.docx 18KB Other download
Fig. 5 169KB Image download
Fig. 3 235KB Image download
【 图 表 】

Fig. 3

Fig. 5

12936_2017_2075_Article_IEq66.gif

Fig. 1

Fig. 1

12951_2015_155_Article_IEq56.gif

Fig. 3

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  文献评价指标  
  下载次数:5次 浏览次数:0次