期刊论文详细信息
BMC Bioinformatics
Inferring circadian gene regulatory relationships from gene expression data with a hybrid framework
Research
Yi Jing1  You-Gan Wang2  Yu-Chu Tian3  Shuwen Hu4  Jing Gao5  Zhenyu Liu5  Tao Li6 
[1] Faculty of Science, The University of New South Wales, 2052, Sydney, Australia;Institute for Learning Sciences and Teacher Education, Australian Catholic University, 4000, Brisbane, QLD, Australia;School of Computer Science, Queensland University of Technology, 4001, Brisbane, QLD, Australia;School of Computer Science, Queensland University of Technology, 4001, Brisbane, QLD, Australia;Agriculture and Food, CSIRO, 4067, St Lucia, QLD, Australia;School of Computer and Information Engineering, Inner Mongolia Agriculture University, 010018, Hohhot, China;School of Life Sciences, Inner Mongolia Agricultural University, 010018, Hohhot, China;
关键词: Circadian gene;    Gene regulatory relationships;    Gene expression data;    Fuzzy c-means clustering;    Dynamic time warping;   
DOI  :  10.1186/s12859-023-05458-y
 received in 2022-12-21, accepted in 2023-08-30,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundThe central biological clock governs numerous facets of mammalian physiology, including sleep, metabolism, and immune system regulation. Understanding gene regulatory relationships is crucial for unravelling the mechanisms that underlie various cellular biological processes. While it is possible to infer circadian gene regulatory relationships from time-series gene expression data, relying solely on correlation-based inference may not provide sufficient information about causation. Moreover, gene expression data often have high dimensions but a limited number of observations, posing challenges in their analysis.MethodsIn this paper, we introduce a new hybrid framework, referred to as Circadian Gene Regulatory Framework (CGRF), to infer circadian gene regulatory relationships from gene expression data of rats. The framework addresses the challenges of high-dimensional data by combining the fuzzy C-means clustering algorithm with dynamic time warping distance. Through this approach, we efficiently identify the clusters of genes related to the target gene. To determine the significance of genes within a specific cluster, we employ the Wilcoxon signed-rank test. Subsequently, we use a dynamic vector autoregressive method to analyze the selected significant gene expression profiles and reveal directed causal regulatory relationships based on partial correlation.ConclusionThe proposed CGRF framework offers a comprehensive and efficient solution for understanding circadian gene regulation. Circadian gene regulatory relationships are inferred from the gene expression data of rats based on the Aanat target gene. The results show that genes Pde10a, Atp7b, Prok2, Per1, Rhobtb3 and Dclk1 stand out, which have been known to be essential for the regulation of circadian activity. The potential relationships between genes Tspan15, Eprs, Eml5 and Fsbp with a circadian rhythm need further experimental research.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202310119106744ZK.pdf 2141KB PDF download
13690_2023_1170_Article_IEq122.gif 1KB Image download
12888_2023_5172_Article_IEq40.gif 1KB Image download
Fig. 7 1792KB Image download
13690_2023_1170_Article_IEq138.gif 1KB Image download
Fig. 1 570KB Image download
MediaObjects/13046_2023_2836_MOESM1_ESM.png 4830KB Other download
Fig. 5 3214KB Image download
Fig. 1 78KB Image download
MediaObjects/12944_2023_1914_MOESM1_ESM.docx 29KB Other download
MediaObjects/12888_2023_5131_MOESM1_ESM.docx 13KB Other download
MediaObjects/12888_2023_5131_MOESM2_ESM.docx 24KB Other download
MediaObjects/12888_2023_5131_MOESM3_ESM.pdf 774KB PDF download
MediaObjects/12888_2023_5131_MOESM4_ESM.ods 29KB Other download
Fig. 2 172KB Image download
MediaObjects/13045_2023_1491_MOESM2_ESM.docx 691KB Other download
Fig. 3 77KB Image download
MediaObjects/13045_2023_1491_MOESM4_ESM.docx 239KB Other download
Fig. 3 49KB Image download
Fig. 2 915KB Image download
Fig. 4 364KB Image download
40249_2023_1135_Article_IEq4.gif 1KB Image download
Fig. 2 512KB Image download
13690_2023_1170_Article_IEq60.gif 1KB Image download
Scheme 1 951KB Image download
40249_2023_1135_Article_IEq8.gif 1KB Image download
Fig. 1 649KB Image download
Fig. 1 202KB Image download
Fig. 2 171KB Image download
Fig. 4 964KB Image download
13690_2023_1170_Article_IEq66.gif 1KB Image download
Fig. 4 2066KB Image download
12888_2023_5142_Article_IEq2.gif 1KB Image download
12888_2023_5142_Article_IEq4.gif 1KB Image download
12888_2023_5142_Article_IEq6.gif 1KB Image download
12888_2023_5142_Article_IEq21.gif 1KB Image download
13690_2023_1170_Article_IEq195.gif 1KB Image download
40795_2023_760_Article_IEq26.gif 1KB Image download
Fig. 6 622KB Image download
MediaObjects/12974_2023_2867_MOESM9_ESM.jpg 85KB Other download
Fig. 7 4907KB Image download
12938_2023_1153_Article_IEq25.gif 1KB Image download
12888_2023_5172_Article_IEq4.gif 1KB Image download
13690_2023_1170_Article_IEq222.gif 1KB Image download
13690_2023_1170_Article_IEq223.gif 1KB Image download
MediaObjects/13293_2023_539_MOESM1_ESM.docx 4487KB Other download
12888_2023_5172_Article_IEq10.gif 1KB Image download
Fig. 2 209KB Image download
Fig. 3 49KB Image download
12888_2023_5172_Article_IEq11.gif 1KB Image download
Fig. 2 519KB Image download
MediaObjects/13100_2023_301_MOESM8_ESM.pdf 53KB PDF download
Fig. 2 823KB Image download
Fig. 4 861KB Image download
Fig. 4 865KB Image download
Fig. 3 1511KB Image download
MediaObjects/12888_2023_5074_MOESM1_ESM.docx 122KB Other download
Fig. 2 257KB Image download
MediaObjects/12888_2023_5199_MOESM3_ESM.pdf 386KB PDF download
Fig. 3 118KB Image download
Fig. 1 618KB Image download
Fig. 5 198KB Image download
Fig. 1 95KB Image download
Fig. 2 450KB Image download
Fig. 2 340KB Image download
Fig. 1 99KB Image download
12888_2023_5172_Article_IEq39.gif 1KB Image download
MediaObjects/12888_2023_5169_MOESM1_ESM.pdf 77KB PDF download
12888_2023_5172_Article_IEq40.gif 1KB Image download
【 图 表 】

12888_2023_5172_Article_IEq40.gif

12888_2023_5172_Article_IEq39.gif

Fig. 1

Fig. 2

Fig. 2

Fig. 1

Fig. 5

Fig. 1

Fig. 3

Fig. 2

Fig. 3

Fig. 4

Fig. 4

Fig. 2

Fig. 2

12888_2023_5172_Article_IEq11.gif

Fig. 3

Fig. 2

12888_2023_5172_Article_IEq10.gif

13690_2023_1170_Article_IEq223.gif

13690_2023_1170_Article_IEq222.gif

12888_2023_5172_Article_IEq4.gif

12938_2023_1153_Article_IEq25.gif

Fig. 7

Fig. 6

40795_2023_760_Article_IEq26.gif

13690_2023_1170_Article_IEq195.gif

12888_2023_5142_Article_IEq21.gif

12888_2023_5142_Article_IEq6.gif

12888_2023_5142_Article_IEq4.gif

12888_2023_5142_Article_IEq2.gif

Fig. 4

13690_2023_1170_Article_IEq66.gif

Fig. 4

Fig. 2

Fig. 1

Fig. 1

40249_2023_1135_Article_IEq8.gif

Scheme 1

13690_2023_1170_Article_IEq60.gif

Fig. 2

40249_2023_1135_Article_IEq4.gif

Fig. 4

Fig. 2

Fig. 3

Fig. 3

Fig. 2

Fig. 1

Fig. 5

Fig. 1

13690_2023_1170_Article_IEq138.gif

Fig. 7

12888_2023_5172_Article_IEq40.gif

13690_2023_1170_Article_IEq122.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  文献评价指标  
  下载次数:2次 浏览次数:0次