期刊论文详细信息
BMC Medical Informatics and Decision Making
Improving the recognition of grips and movements of the hand using myoelectric signals
Research
Lynn H. Gerber1  Gene Shuman2  Daniel Barbará2  Jessica Lin2  Zoran Durić2 
[1] Center for the Study of Chronic Illness and Disability, George Mason University, 4400 University Drive, 22030, Fairfax, VA, USA;Department of Computer Science, Volgenau School of Engineering, George Mason University, 4400 University Drive, 22030, Fairfax, VA, USA;
关键词: Electromyograms;    Machine learning;    ADLs;    Prehensile patterns;    Classification;    SAX;    Dynamic time warping;   
DOI  :  10.1186/s12911-016-0308-1
来源: Springer
PDF
【 摘 要 】

BackgroundPeople want to live independently, but too often disabilities or advanced age robs them of the ability to do the necessary activities of daily living (ADLs). Finding relationships between electromyograms measured in the arm and movements of the hand and wrist needed to perform ADLs can help address performance deficits and be exploited in designing myoelectrical control systems for prosthetics and computer interfaces.MethodsThis paper reports on several machine learning techniques employed to discover the electromyogram patterns present when performing 24 typical fine motor functional activities of the hand and the rest position used to accomplish ADLs. Accelerometer data is collected from the hand as an aid in identifying the start and end of movements and to help in labeling the signal data. Techniques employed include classification of 100 ms individual signal instances, using a symbolic representation to approximate signal streams, and the use of nearest neighbor in two specific situations: creation of an affinity matrix to model learning instances and classify based on multiple adjacent signal values, and using Dynamic Time Warping (DTW) as a distance measure to classify entire activity segments.ResultsResults show the patterns can be learned to an accuracy of 76.64 % for a 25 class problem when classifying 100 ms instances, 83.63 % with the affinity matrix approach with symbolic representation, and 85.22 % with Dynamic Time Warping. Classification errors are, with a few exceptions, concentrated within particular grip action groups.ConclusionThe findings reported here support the view that grips and movements of the hand can be distinguished by combining electrical and mechanical properties of the task to an accuracy of 85.22 % for a 25 class problem. Converting the signals to a symbolic representation and classifying based on larger portions of the signal stream improve classification accuracy. This is both clinically useful and opens the way for an approach to help simulate hand functional activities. With improvements it may also prove useful in real time control applications.

【 授权许可】

CC BY   
© The Author(s) 2016

【 预 览 】
附件列表
Files Size Format View
RO202311094279436ZK.pdf 3848KB PDF download
12864_2017_3600_Article_IEq3.gif 1KB Image download
12864_2017_3733_Article_IEq6.gif 1KB Image download
12864_2016_2796_Article_IEq12.gif 1KB Image download
12864_2017_4004_Article_IEq1.gif 1KB Image download
12864_2016_2682_Article_IEq54.gif 1KB Image download
12864_2017_4186_Article_IEq20.gif 1KB Image download
12864_2017_4030_Article_IEq17.gif 1KB Image download
12864_2017_4030_Article_IEq18.gif 1KB Image download
12864_2017_4186_Article_IEq24.gif 1KB Image download
12864_2017_4030_Article_IEq20.gif 1KB Image download
12888_2016_811_Article_IEq1.gif 1KB Image download
12864_2017_4186_Article_IEq27.gif 1KB Image download
12864_2017_4186_Article_IEq28.gif 1KB Image download
12864_2017_4186_Article_IEq29.gif 1KB Image download
12864_2017_4186_Article_IEq30.gif 1KB Image download
12864_2017_4186_Article_IEq31.gif 1KB Image download
12864_2017_4186_Article_IEq32.gif 1KB Image download
12864_2017_4226_Article_IEq1.gif 1KB Image download
12880_2016_176_Article_IEq10.gif 1KB Image download
12864_2017_4228_Article_IEq2.gif 1KB Image download
12864_2017_3715_Article_IEq1.gif 1KB Image download
12864_2017_3628_Article_IEq1.gif 1KB Image download
12864_2017_4030_Article_IEq35.gif 1KB Image download
12888_2016_877_Article_IEq20.gif 1KB Image download
12864_2017_4132_Article_IEq16.gif 1KB Image download
【 图 表 】

12864_2017_4132_Article_IEq16.gif

12888_2016_877_Article_IEq20.gif

12864_2017_4030_Article_IEq35.gif

12864_2017_3628_Article_IEq1.gif

12864_2017_3715_Article_IEq1.gif

12864_2017_4228_Article_IEq2.gif

12880_2016_176_Article_IEq10.gif

12864_2017_4226_Article_IEq1.gif

12864_2017_4186_Article_IEq32.gif

12864_2017_4186_Article_IEq31.gif

12864_2017_4186_Article_IEq30.gif

12864_2017_4186_Article_IEq29.gif

12864_2017_4186_Article_IEq28.gif

12864_2017_4186_Article_IEq27.gif

12888_2016_811_Article_IEq1.gif

12864_2017_4030_Article_IEq20.gif

12864_2017_4186_Article_IEq24.gif

12864_2017_4030_Article_IEq18.gif

12864_2017_4030_Article_IEq17.gif

12864_2017_4186_Article_IEq20.gif

12864_2016_2682_Article_IEq54.gif

12864_2017_4004_Article_IEq1.gif

12864_2016_2796_Article_IEq12.gif

12864_2017_3733_Article_IEq6.gif

12864_2017_3600_Article_IEq3.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  文献评价指标  
  下载次数:3次 浏览次数:0次