Health and Quality of Life Outcomes | |
Comparing the mapping between EQ-5D-5L, EQ-5D-3L and the EORTC-QLQ-C30 in non-small cell lung cancer patients | |
Research | |
Iftekhar Khan1  Steve Morris2  Nora Pashayan2  Bashir Matata3  Joe Maguirre3  Zahid Bashir4  | |
[1] Clinical Trials Unit & Department of Health Economics, University of Surrey, Guilford, UK;Department of Applied Health Research, University College London, London, UK;Department of Applied Health Research, University College London, London, UK;Liverpool Heart and Chest Hospital, Liverpool, UK;University of Birmingham, Cancer School, Birmingham, UK; | |
关键词: Root Mean Square Error; NSCLC Patient; Mapping Algorithm; Poor Health State; Mean Absolute Error; | |
DOI : 10.1186/s12955-016-0455-1 | |
received in 2015-07-19, accepted in 2016-03-23, 发布年份 2016 | |
来源: Springer | |
【 摘 要 】
BackgroundSeveral mapping algorithms have been published with the EORTC-QLQ-C30 for estimating EQ-5D-3L utilities. However, none are available with EQ-5D-5L. Moreover, a comparison between mapping algorithms in the same set of patients has not been performed for these two instruments simultaneously. In this prospective data set of 100 non-small cell lung cancer (NSCLC) patients, we investigate three mapping algorithms using the EQ-5D-3L and EQ-5D-5L and compare their performance.MethodsA prospective non-interventional cohort of 100 NSCLC patients were followed up for 12 months. EQ-5D-3L, EQ-5D-5L and EORTC-QLQ-C30 were assessed monthly. EQ-5D-5L was completed at least 1 week after EQ-5D-3L. A random effects linear regression model, a beta-binomial (BB) and a Limited Variable Dependent Mixture (LVDM) model were used to determine a mapping algorithm between EQ-5D-3L, EQ-5D-5L and QLQ-C30. Simulation and cross validation and other statistical measures were used to compare the performances of the algorithms.ResultsMapping from the EQ-5D-5L was better: lower AIC, RMSE, MAE and higher R2 were reported with the EQ-5D-5L than with EQ-5D-3L regardless of the functional form of the algorithm. The BB model proved to be more useful for both instruments: for the EQ-5D-5L, AIC was –485, R2 of 75 %, MAE of 0.075 and RMSE was 0.092. This was –385, 69 %, 0.099 and 0.113 for EQ-5D-3L respectively. The mean observed vs. predicted utilities were 0.572 vs. 0.577 and 0.515 vs. 0.523 for EQ-5D-5L and EQ-5D-3L respectively, for OLS; for BB, these were 0.572 vs. 0.575 and 0.515 vs. 0.518 respectively and for LVDMM 0.532 vs 0.515 and 0.569 vs 0.572 respectively. Less over-prediction at poorer health states was observed with EQ-5D-5L.ConclusionsThe BB mapping algorithm is confirmed to offer a better fit for both EQ-5D-3L and EQ-5D-5L. The results confirm previous and more recent results on the use of BB type modelling approaches for mapping. It is recommended that in studies where EQ-5D utilities have not been collected, an EQ-5D-5L mapping algorithm is used.
【 授权许可】
CC BY
© Khan et al. 2016
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311103755375ZK.pdf | 3700KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]