期刊论文详细信息
Environmental Health
Ambient temperature and coronary heart disease mortality in Beijing, China: a time series study
Research
Jouni JK Jaakkola1  Zhaoxing Tian2  Shanshan Li3  Yuming Guo4  Jinliang Zhang5 
[1] Center for Environmental and Respiratory Health Research, Institute of Health Sciences, University of Oulu, Oulu, Finland;Emergency Department of Peking University Third Hospital, Beijing, China;School of Population health, The University of Queensland, Brisbane, Australia;School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia;School of Medicine, The University of Queensland, Brisbane, Australia;State Key Laboratory of Environmental Criteria and Risk Assessment & Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing, China;
关键词: Ambient temperature;    Coronary heart disease;    Mortality;    Cold effect;    Hot effect;    Gender;    Age;   
DOI  :  10.1186/1476-069X-11-56
 received in 2012-07-04, accepted in 2012-08-17,  发布年份 2012
来源: Springer
PDF
【 摘 要 】

BackgroundMany studies have examined the association between ambient temperature and mortality. However, less evidence is available on the temperature effects on coronary heart disease (CHD) mortality, especially in China. In this study, we examined the relationship between ambient temperature and CHD mortality in Beijing, China during 2000 to 2011. In addition, we compared time series and time-stratified case-crossover models for the non-linear effects of temperature.MethodsWe examined the effects of temperature on CHD mortality using both time series and time-stratified case-crossover models. We also assessed the effects of temperature on CHD mortality by subgroups: gender (female and male) and age (age > =65 and age < 65). We used a distributed lag non-linear model to examine the non-linear effects of temperature on CHD mortality up to 15 lag days. We used Akaike information criterion to assess the model fit for the two designs.ResultsThe time series models had a better model fit than time-stratified case-crossover models. Both designs showed that the relationships between temperature and group-specific CHD mortality were non-linear. Extreme cold and hot temperatures significantly increased the risk of CHD mortality. Hot effects were acute and short-term, while cold effects were delayed by two days and lasted for five days. The old people and women were more sensitive to extreme cold and hot temperatures than young and men.ConclusionsThis study suggests that time series models performed better than time-stratified case-crossover models according to the model fit, even though they produced similar non-linear effects of temperature on CHD mortality. In addition, our findings indicate that extreme cold and hot temperatures increase the risk of CHD mortality in Beijing, China, particularly for women and old people.

【 授权许可】

CC BY   
© Tian et al.; licensee BioMed Central Ltd. 2012

【 预 览 】
附件列表
Files Size Format View
RO202311103225496ZK.pdf 599KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  文献评价指标  
  下载次数:1次 浏览次数:0次