期刊论文详细信息
BMC Genomics
Predictive computational phenotyping and biomarker discovery using reference-free genome comparisons
Methodology Article
Alexandre Drouin1  Mario Marchand2  François Laviolette2  Maxime Déraspe3  Jacques Corbeil4  Anne-Marie Bourgault5  Vivian G. Loo5  Sébastien Giguère6  Michael Tyers6 
[1] Department of Computer Science and Software Engineering, Université Laval, Québec, Canada;Department of Computer Science and Software Engineering, Université Laval, Québec, Canada;Big Data Research Centre, Université Laval, Québec, Canada;Department of Molecular Medicine, Université Laval, Québec, Canada;Department of Molecular Medicine, Université Laval, Québec, Canada;Big Data Research Centre, Université Laval, Québec, Canada;Division of Infectious Diseases, Departments of Medicine and Microbiology, McGill University Health Centre, Montréal, Canada;Department of Medicine, McGill University, Montréal, Canada;Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada;
关键词: Machine learning;    Biomarker discovery;    Antibiotic resistance;    Bacteria;    Genomics;   
DOI  :  10.1186/s12864-016-2889-6
 received in 2016-02-20, accepted in 2016-07-06,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundThe identification of genomic biomarkers is a key step towards improving diagnostic tests and therapies. We present a reference-free method for this task that relies on a k-mer representation of genomes and a machine learning algorithm that produces intelligible models. The method is computationally scalable and well-suited for whole genome sequencing studies.ResultsThe method was validated by generating models that predict the antibiotic resistance of C. difficile, M. tuberculosis, P. aeruginosa, and S. pneumoniae for 17 antibiotics. The obtained models are accurate, faithful to the biological pathways targeted by the antibiotics, and they provide insight into the process of resistance acquisition. Moreover, a theoretical analysis of the method revealed tight statistical guarantees on the accuracy of the obtained models, supporting its relevance for genomic biomarker discovery.ConclusionsOur method allows the generation of accurate and interpretable predictive models of phenotypes, which rely on a small set of genomic variations. The method is not limited to predicting antibiotic resistance in bacteria and is applicable to a variety of organisms and phenotypes. Kover, an efficient implementation of our method, is open-source and should guide biological efforts to understand a plethora of phenotypes (http://github.com/aldro61/kover/).

【 授权许可】

CC BY   
© The Author(s) 2016

【 预 览 】
附件列表
Files Size Format View
RO202311101929953ZK.pdf 1123KB PDF download
Fig. 2 172KB Image download
Fig. 1 104KB Image download
12864_2016_2889_Article_IEq3.gif 1KB Image download
Fig. 1 3761KB Image download
MediaObjects/40249_2023_1146_MOESM6_ESM.png 166KB Other download
Fig. 1 61KB Image download
12944_2023_1927_Article_IEq25.gif 1KB Image download
Fig. 1 96KB Image download
13690_2023_1196_Figa_HTML.png 1KB Image download
13690_2023_1196_Figb_HTML.png 1KB Image download
12951_2015_155_Article_IEq37.gif 1KB Image download
Fig. 1 130KB Image download
Fig. 2 46KB Image download
12936_2015_894_Article_IEq17.gif 1KB Image download
MediaObjects/13395_2023_326_MOESM1_ESM.docx 300KB Other download
12951_2015_155_Article_IEq39.gif 1KB Image download
12864_2015_2198_Article_IEq1.gif 1KB Image download
Fig. 3 132KB Image download
Fig. 1 103KB Image download
12951_2015_155_Article_IEq40.gif 1KB Image download
Fig. 2 2732KB Image download
12951_2015_155_Article_IEq42.gif 1KB Image download
Fig. 8 109KB Image download
Fig. 1 1002KB Image download
Fig. 3 311KB Image download
Fig. 2 1185KB Image download
MediaObjects/42004_2023_1019_MOESM2_ESM.pdf 10064KB PDF download
Fig. 3 2073KB Image download
【 图 表 】

Fig. 3

Fig. 2

Fig. 3

Fig. 1

Fig. 8

12951_2015_155_Article_IEq42.gif

Fig. 2

12951_2015_155_Article_IEq40.gif

Fig. 1

Fig. 3

12864_2015_2198_Article_IEq1.gif

12951_2015_155_Article_IEq39.gif

12936_2015_894_Article_IEq17.gif

Fig. 2

Fig. 1

12951_2015_155_Article_IEq37.gif

13690_2023_1196_Figb_HTML.png

13690_2023_1196_Figa_HTML.png

Fig. 1

12944_2023_1927_Article_IEq25.gif

Fig. 1

Fig. 1

12864_2016_2889_Article_IEq3.gif

Fig. 1

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  文献评价指标  
  下载次数:37次 浏览次数:0次