BMC Bioinformatics | |
Parallel multiple instance learning for extremely large histopathology image analysis | |
Research Article | |
Ziwei Wu1  Maode Lai2  Teng Gao3  Eric I-Chao Chang3  Yeshu Li4  Yubo Fan5  Zhengyang Shen5  Yan Xu6  | |
[1] College of Information and Electrical Engineering, China Agricultural University, Beijing, China;Department of Pathology, School of Medicine, Zhejiang University, Zhejiang, China;Microsoft Research Asia, Beijing, China;School of Computer Science and Engineering, Beihang University, Beijing, China;State Key Laboratory of Software Development Environment and Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education and Research Institute of Beihang University in Shenzhen, Beijing, China;State Key Laboratory of Software Development Environment and Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education and Research Institute of Beihang University in Shenzhen, Beijing, China;Microsoft Research Asia, Beijing, China; | |
关键词: Histopathology image analysis; Microscopic image analysis; Multiple instance learning; Parallelization; | |
DOI : 10.1186/s12859-017-1768-8 | |
received in 2017-03-08, accepted in 2017-07-19, 发布年份 2017 | |
来源: Springer | |
【 摘 要 】
BackgroundHistopathology images are critical for medical diagnosis, e.g., cancer and its treatment. A standard histopathology slice can be easily scanned at a high resolution of, say, 200,000×200,000 pixels. These high resolution images can make most existing imaging processing tools infeasible or less effective when operated on a single machine with limited memory, disk space and computing power.ResultsIn this paper, we propose an algorithm tackling this new emerging “big data” problem utilizing parallel computing on High-Performance-Computing (HPC) clusters. Experimental results on a large-scale data set (1318 images at a scale of 10 billion pixels each) demonstrate the efficiency and effectiveness of the proposed algorithm for low-latency real-time applications.ConclusionsThe framework proposed an effective and efficient system for extremely large histopathology image analysis. It is based on the multiple instance learning formulation for weakly-supervised learning for image classification, segmentation and clustering. When a max-margin concept is adopted for different clusters, we obtain further improvement in clustering performance.
【 授权许可】
CC BY
© The Author(s) 2017
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311100965144ZK.pdf | 1275KB | download | |
MediaObjects/12888_2023_5281_MOESM1_ESM.docx | 14KB | Other | download |
Fig. 3 | 40KB | Image | download |
Fig. 1 | 258KB | Image | download |
MediaObjects/12888_2023_5208_MOESM1_ESM.docx | 7KB | Other | download |
12936_2017_1963_Article_IEq60.gif | 1KB | Image | download |
Fig. 8 | 780KB | Image | download |
Fig. 3 | 2506KB | Image | download |
12936_2016_1316_Article_IEq8.gif | 1KB | Image | download |
12951_2017_255_Article_IEq33.gif | 1KB | Image | download |
MediaObjects/12951_2023_2144_MOESM1_ESM.docx | 15232KB | Other | download |
12951_2017_255_Article_IEq34.gif | 1KB | Image | download |
12951_2015_155_Article_IEq53.gif | 1KB | Image | download |
MediaObjects/13046_2023_2843_MOESM2_ESM.docx | 5319KB | Other | download |
12951_2015_155_Article_IEq54.gif | 1KB | Image | download |
Fig. 2 | 159KB | Image | download |
Fig. 1 | 191KB | Image | download |
MediaObjects/40538_2023_474_MOESM8_ESM.xls | 17KB | Other | download |
Fig. 1 | 167KB | Image | download |
Fig. 2 | 47KB | Image | download |
Fig. 2 | 80KB | Image | download |
12951_2017_255_Article_IEq36.gif | 1KB | Image | download |
Fig. 3 | 42KB | Image | download |
12951_2015_155_Article_IEq56.gif | 1KB | Image | download |
Fig. 2 | 576KB | Image | download |
MediaObjects/12888_2023_5265_MOESM1_ESM.xlsx | 198KB | Other | download |
Fig. 2 | 192KB | Image | download |
12936_2017_2045_Article_IEq3.gif | 1KB | Image | download |
Fig. 5 | 969KB | Image | download |
12936_2017_2045_Article_IEq5.gif | 1KB | Image | download |
MediaObjects/12888_2023_5265_MOESM2_ESM.docx | 14KB | Other | download |
Fig. 3 | 200KB | Image | download |
Fig. 1 | 1829KB | Image | download |
Fig. 1 | 245KB | Image | download |
12936_2017_2075_Article_IEq66.gif | 1KB | Image | download |
【 图 表 】
12936_2017_2075_Article_IEq66.gif
Fig. 1
Fig. 1
Fig. 3
12936_2017_2045_Article_IEq5.gif
Fig. 5
12936_2017_2045_Article_IEq3.gif
Fig. 2
Fig. 2
12951_2015_155_Article_IEq56.gif
Fig. 3
12951_2017_255_Article_IEq36.gif
Fig. 2
Fig. 2
Fig. 1
Fig. 1
Fig. 2
12951_2015_155_Article_IEq54.gif
12951_2015_155_Article_IEq53.gif
12951_2017_255_Article_IEq34.gif
12951_2017_255_Article_IEq33.gif
12936_2016_1316_Article_IEq8.gif
Fig. 3
Fig. 8
12936_2017_1963_Article_IEq60.gif
Fig. 1
Fig. 3
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]
- [70]