期刊论文详细信息
BMC Bioinformatics
Parallel multiple instance learning for extremely large histopathology image analysis
Research Article
Ziwei Wu1  Maode Lai2  Teng Gao3  Eric I-Chao Chang3  Yeshu Li4  Yubo Fan5  Zhengyang Shen5  Yan Xu6 
[1] College of Information and Electrical Engineering, China Agricultural University, Beijing, China;Department of Pathology, School of Medicine, Zhejiang University, Zhejiang, China;Microsoft Research Asia, Beijing, China;School of Computer Science and Engineering, Beihang University, Beijing, China;State Key Laboratory of Software Development Environment and Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education and Research Institute of Beihang University in Shenzhen, Beijing, China;State Key Laboratory of Software Development Environment and Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education and Research Institute of Beihang University in Shenzhen, Beijing, China;Microsoft Research Asia, Beijing, China;
关键词: Histopathology image analysis;    Microscopic image analysis;    Multiple instance learning;    Parallelization;   
DOI  :  10.1186/s12859-017-1768-8
 received in 2017-03-08, accepted in 2017-07-19,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundHistopathology images are critical for medical diagnosis, e.g., cancer and its treatment. A standard histopathology slice can be easily scanned at a high resolution of, say, 200,000×200,000 pixels. These high resolution images can make most existing imaging processing tools infeasible or less effective when operated on a single machine with limited memory, disk space and computing power.ResultsIn this paper, we propose an algorithm tackling this new emerging “big data” problem utilizing parallel computing on High-Performance-Computing (HPC) clusters. Experimental results on a large-scale data set (1318 images at a scale of 10 billion pixels each) demonstrate the efficiency and effectiveness of the proposed algorithm for low-latency real-time applications.ConclusionsThe framework proposed an effective and efficient system for extremely large histopathology image analysis. It is based on the multiple instance learning formulation for weakly-supervised learning for image classification, segmentation and clustering. When a max-margin concept is adopted for different clusters, we obtain further improvement in clustering performance.

【 授权许可】

CC BY   
© The Author(s) 2017

【 预 览 】
附件列表
Files Size Format View
RO202311098943436ZK.pdf 1275KB PDF download
12864_2017_4186_Article_IEq24.gif 1KB Image download
12864_2017_4030_Article_IEq20.gif 1KB Image download
12864_2017_4030_Article_IEq22.gif 1KB Image download
12864_2017_4004_Article_IEq10.gif 2KB Image download
12864_2017_4004_Article_IEq12.gif 1KB Image download
12864_2017_3487_Article_IEq16.gif 1KB Image download
12864_2017_3733_Article_IEq19.gif 1KB Image download
12898_2017_155_Article_IEq33.gif 1KB Image download
12864_2017_4004_Article_IEq14.gif 1KB Image download
12864_2016_2392_Article_IEq2.gif 1KB Image download
12864_2017_4004_Article_IEq15.gif 1KB Image download
12864_2017_4030_Article_IEq28.gif 1KB Image download
12864_2016_2793_Article_IEq13.gif 1KB Image download
12864_2017_4226_Article_IEq2.gif 1KB Image download
12864_2017_4132_Article_IEq10.gif 1KB Image download
12864_2017_4228_Article_IEq2.gif 1KB Image download
12864_2017_4132_Article_IEq11.gif 1KB Image download
12864_2017_3715_Article_IEq1.gif 1KB Image download
12864_2017_4179_Article_IEq24.gif 1KB Image download
12864_2015_2273_Article_IEq14.gif 1KB Image download
12864_2016_2793_Article_IEq21.gif 1KB Image download
12864_2017_4179_Article_IEq26.gif 1KB Image download
12864_2017_3990_Article_IEq2.gif 1KB Image download
12864_2017_3687_Article_IEq1.gif 1KB Image download
12864_2017_3771_Article_IEq6.gif 1KB Image download
12888_2016_877_Article_IEq15.gif 1KB Image download
12888_2016_877_Article_IEq16.gif 1KB Image download
12888_2016_877_Article_IEq17.gif 1KB Image download
12888_2016_877_Article_IEq18.gif 1KB Image download
12864_2015_2129_Article_IEq5.gif 1KB Image download
12711_2017_365_Article_IEq33.gif 1KB Image download
12888_2016_877_Article_IEq19.gif 1KB Image download
12888_2016_877_Article_IEq20.gif 1KB Image download
12864_2015_2129_Article_IEq8.gif 1KB Image download
【 图 表 】

12864_2015_2129_Article_IEq8.gif

12888_2016_877_Article_IEq20.gif

12888_2016_877_Article_IEq19.gif

12711_2017_365_Article_IEq33.gif

12864_2015_2129_Article_IEq5.gif

12888_2016_877_Article_IEq18.gif

12888_2016_877_Article_IEq17.gif

12888_2016_877_Article_IEq16.gif

12888_2016_877_Article_IEq15.gif

12864_2017_3771_Article_IEq6.gif

12864_2017_3687_Article_IEq1.gif

12864_2017_3990_Article_IEq2.gif

12864_2017_4179_Article_IEq26.gif

12864_2016_2793_Article_IEq21.gif

12864_2015_2273_Article_IEq14.gif

12864_2017_4179_Article_IEq24.gif

12864_2017_3715_Article_IEq1.gif

12864_2017_4132_Article_IEq11.gif

12864_2017_4228_Article_IEq2.gif

12864_2017_4132_Article_IEq10.gif

12864_2017_4226_Article_IEq2.gif

12864_2016_2793_Article_IEq13.gif

12864_2017_4030_Article_IEq28.gif

12864_2017_4004_Article_IEq15.gif

12864_2016_2392_Article_IEq2.gif

12864_2017_4004_Article_IEq14.gif

12898_2017_155_Article_IEq33.gif

12864_2017_3733_Article_IEq19.gif

12864_2017_3487_Article_IEq16.gif

12864_2017_4004_Article_IEq12.gif

12864_2017_4004_Article_IEq10.gif

12864_2017_4030_Article_IEq22.gif

12864_2017_4030_Article_IEq20.gif

12864_2017_4186_Article_IEq24.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  文献评价指标  
  下载次数:12次 浏览次数:2次