BMC Bioinformatics | |
Parallel multiple instance learning for extremely large histopathology image analysis | |
Research Article | |
Ziwei Wu1  Maode Lai2  Teng Gao3  Eric I-Chao Chang3  Yeshu Li4  Yubo Fan5  Zhengyang Shen5  Yan Xu6  | |
[1] College of Information and Electrical Engineering, China Agricultural University, Beijing, China;Department of Pathology, School of Medicine, Zhejiang University, Zhejiang, China;Microsoft Research Asia, Beijing, China;School of Computer Science and Engineering, Beihang University, Beijing, China;State Key Laboratory of Software Development Environment and Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education and Research Institute of Beihang University in Shenzhen, Beijing, China;State Key Laboratory of Software Development Environment and Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education and Research Institute of Beihang University in Shenzhen, Beijing, China;Microsoft Research Asia, Beijing, China; | |
关键词: Histopathology image analysis; Microscopic image analysis; Multiple instance learning; Parallelization; | |
DOI : 10.1186/s12859-017-1768-8 | |
received in 2017-03-08, accepted in 2017-07-19, 发布年份 2017 | |
来源: Springer | |
【 摘 要 】
BackgroundHistopathology images are critical for medical diagnosis, e.g., cancer and its treatment. A standard histopathology slice can be easily scanned at a high resolution of, say, 200,000×200,000 pixels. These high resolution images can make most existing imaging processing tools infeasible or less effective when operated on a single machine with limited memory, disk space and computing power.ResultsIn this paper, we propose an algorithm tackling this new emerging “big data” problem utilizing parallel computing on High-Performance-Computing (HPC) clusters. Experimental results on a large-scale data set (1318 images at a scale of 10 billion pixels each) demonstrate the efficiency and effectiveness of the proposed algorithm for low-latency real-time applications.ConclusionsThe framework proposed an effective and efficient system for extremely large histopathology image analysis. It is based on the multiple instance learning formulation for weakly-supervised learning for image classification, segmentation and clustering. When a max-margin concept is adopted for different clusters, we obtain further improvement in clustering performance.
【 授权许可】
CC BY
© The Author(s) 2017
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311098943436ZK.pdf | 1275KB | download | |
12864_2017_4186_Article_IEq24.gif | 1KB | Image | download |
12864_2017_4030_Article_IEq20.gif | 1KB | Image | download |
12864_2017_4030_Article_IEq22.gif | 1KB | Image | download |
12864_2017_4004_Article_IEq10.gif | 2KB | Image | download |
12864_2017_4004_Article_IEq12.gif | 1KB | Image | download |
12864_2017_3487_Article_IEq16.gif | 1KB | Image | download |
12864_2017_3733_Article_IEq19.gif | 1KB | Image | download |
12898_2017_155_Article_IEq33.gif | 1KB | Image | download |
12864_2017_4004_Article_IEq14.gif | 1KB | Image | download |
12864_2016_2392_Article_IEq2.gif | 1KB | Image | download |
12864_2017_4004_Article_IEq15.gif | 1KB | Image | download |
12864_2017_4030_Article_IEq28.gif | 1KB | Image | download |
12864_2016_2793_Article_IEq13.gif | 1KB | Image | download |
12864_2017_4226_Article_IEq2.gif | 1KB | Image | download |
12864_2017_4132_Article_IEq10.gif | 1KB | Image | download |
12864_2017_4228_Article_IEq2.gif | 1KB | Image | download |
12864_2017_4132_Article_IEq11.gif | 1KB | Image | download |
12864_2017_3715_Article_IEq1.gif | 1KB | Image | download |
12864_2017_4179_Article_IEq24.gif | 1KB | Image | download |
12864_2015_2273_Article_IEq14.gif | 1KB | Image | download |
12864_2016_2793_Article_IEq21.gif | 1KB | Image | download |
12864_2017_4179_Article_IEq26.gif | 1KB | Image | download |
12864_2017_3990_Article_IEq2.gif | 1KB | Image | download |
12864_2017_3687_Article_IEq1.gif | 1KB | Image | download |
12864_2017_3771_Article_IEq6.gif | 1KB | Image | download |
12888_2016_877_Article_IEq15.gif | 1KB | Image | download |
12888_2016_877_Article_IEq16.gif | 1KB | Image | download |
12888_2016_877_Article_IEq17.gif | 1KB | Image | download |
12888_2016_877_Article_IEq18.gif | 1KB | Image | download |
12864_2015_2129_Article_IEq5.gif | 1KB | Image | download |
12711_2017_365_Article_IEq33.gif | 1KB | Image | download |
12888_2016_877_Article_IEq19.gif | 1KB | Image | download |
12888_2016_877_Article_IEq20.gif | 1KB | Image | download |
12864_2015_2129_Article_IEq8.gif | 1KB | Image | download |
【 图 表 】
12864_2015_2129_Article_IEq8.gif
12888_2016_877_Article_IEq20.gif
12888_2016_877_Article_IEq19.gif
12711_2017_365_Article_IEq33.gif
12864_2015_2129_Article_IEq5.gif
12888_2016_877_Article_IEq18.gif
12888_2016_877_Article_IEq17.gif
12888_2016_877_Article_IEq16.gif
12888_2016_877_Article_IEq15.gif
12864_2017_3771_Article_IEq6.gif
12864_2017_3687_Article_IEq1.gif
12864_2017_3990_Article_IEq2.gif
12864_2017_4179_Article_IEq26.gif
12864_2016_2793_Article_IEq21.gif
12864_2015_2273_Article_IEq14.gif
12864_2017_4179_Article_IEq24.gif
12864_2017_3715_Article_IEq1.gif
12864_2017_4132_Article_IEq11.gif
12864_2017_4228_Article_IEq2.gif
12864_2017_4132_Article_IEq10.gif
12864_2017_4226_Article_IEq2.gif
12864_2016_2793_Article_IEq13.gif
12864_2017_4030_Article_IEq28.gif
12864_2017_4004_Article_IEq15.gif
12864_2016_2392_Article_IEq2.gif
12864_2017_4004_Article_IEq14.gif
12898_2017_155_Article_IEq33.gif
12864_2017_3733_Article_IEq19.gif
12864_2017_3487_Article_IEq16.gif
12864_2017_4004_Article_IEq12.gif
12864_2017_4004_Article_IEq10.gif
12864_2017_4030_Article_IEq22.gif
12864_2017_4030_Article_IEq20.gif
12864_2017_4186_Article_IEq24.gif
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]
- [70]