Microbial Cell Factories | |
Cellulosic ethanol production using a yeast consortium displaying a minicellulosome and β-glucosidase | |
Research | |
Kyusung Lee1  Ji-Sook Hahn1  Sujin Kim1  Seung-Ho Baek1  | |
[1] School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, 151-744, Gwanak-gu, Seoul, Republic of Korea; | |
关键词: Cellulosic bioethanol; Cellulosome; Consolidated bioprocessing; Yeast surface display; | |
DOI : 10.1186/1475-2859-12-14 | |
received in 2012-10-26, accepted in 2013-02-01, 发布年份 2013 | |
来源: Springer | |
【 摘 要 】
BackgroundCellulosic biomass is considered as a promising alternative to fossil fuels, but its recalcitrant nature and high cost of cellulase are the major obstacles to utilize this material. Consolidated bioprocessing (CBP), combining cellulase production, saccharification, and fermentation into one step, has been proposed as the most efficient way to reduce the production cost of cellulosic bioethanol. In this study, we developed a cellulolytic yeast consortium for CBP, based on the surface display of cellulosome structure, mimicking the cellulolytic bacterium, Clostridium thermocellum.ResultsWe designed a cellulolytic yeast consortium composed of four different yeast strains capable of either displaying a scaffoldin (mini CipA) containing three cohesin domains derived from C. thermocellum, or secreting one of the three types of cellulases, C. thermocellum CelA (endoglucanase) containing its own dockerin, Trichoderma reesei CBHII (exoglucanase) fused with an exogenous dockerin from C. thermocellum, or Aspergillus aculeatus BGLI (β-glucosidase). The secreted dockerin-containing enzymes, CelA and CBHI, were randomly assembled to the surface-displayed mini CipA via cohesin-dockerin interactions. On the other hand, BGLI was independently assembled to the cell surface since we newly found that it already has a cell adhesion characteristic. We optimized the cellulosome activity and ethanol production by controlling the combination ratio among the four yeast strains. A mixture of cells with the optimized mini CipA:CelA:CBHII:BGLI ratio of 2:3:3:0.53 produced 1.80 g/l ethanol after 94 h, indicating about 20% increase compared with a consortium composed of an equal amount of each cell type (1.48 g/l).ConclusionsWe produced cellulosic ethanol using a cellulolytic yeast consortium, which is composed of cells displaying mini cellulosomes generated via random assembly of CelA and CBHII to a mini CipA, and cells displaying BGLI independently. One of the advantages of this system is that ethanol production can be easily optimized by simply changing the combination ratio of the different populations. In addition, there is no limitation on the number of enzymes to be incorporated into this cellulosome structure. Not only cellulases used in this study, but also any other enzymes, including cellulases and hemicellulases, could be applied just by fusing dockerin domains to the enzymes.
【 授权许可】
Unknown
© Kim et al; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311100868918ZK.pdf | 607KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]