期刊论文详细信息
Biotechnology for Biofuels
Functional heterologous expression of an engineered full length CipA from Clostridium thermocellum in Thermoanaerobacterium saccharolyticum
Lee R Lynd3  David A Hogsett3  Daniel G Olson1  Adam M Guss2  Christopher D Herring1  Devin H Currie3 
[1]Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
[2]Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
[3]Mascoma Corporation, Lebanon, NH 03766, USA
关键词: Consolidated bioprocessing;    Ethanol;    Anaerobe;    Thermophile;    Cellulosome;    Clostridium thermocellum;    Thermoanaerobacterium saccharolyticum;   
Others  :  798136
DOI  :  10.1186/1754-6834-6-32
 received in 2012-11-06, accepted in 2013-02-08,  发布年份 2013
PDF
【 摘 要 】

Background

Cellulose is highly recalcitrant and thus requires a specialized suite of enzymes to solubilize it into fermentable sugars. In C. thermocellum, these extracellular enzymes are present as a highly active multi-component system known as the cellulosome. This study explores the expression of a critical C. thermocellum cellulosomal component in T. saccharolyticum as a step toward creating a thermophilic bacterium capable of consolidated bioprocessing by employing heterologously expressed cellulosomes.

Results

We developed an inducible promoter system based on the native T. saccharolyticum xynA promoter, which was shown to be induced by xylan and xylose. The promoter was used to express the cellulosomal component cipA*, an engineered form of the wild-type cipA from C. thermocellum. Expression and localization to the supernatant were both verified for CipA*. When a ΔcipA mutant C. thermocellum strain was cultured with a CipA*-expressing T. saccharolyticum strain, hydrolysis and fermentation of 10 grams per liter SigmaCell 101, a highly crystalline cellulose, were observed. This trans-species complementation of a cipA deletion demonstrated the ability for CipA* to assemble a functional cellulosome.

Conclusion

This study is the first example of an engineered thermophile heterologously expressing a structural component of a cellulosome. To achieve this goal we developed and tested an inducible promoter for controlled expression in T. saccharolyticum as well as a synthetic cipA. In addition, we demonstrate a high degree of hydrolysis (up to 93%) on microcrystalline cellulose.

【 授权许可】

   
2013 Currie et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706102230501.pdf 3085KB PDF download
Figure 5. 109KB Image download
Figure 4. 47KB Image download
Figure 3. 85KB Image download
Figure 2. 52KB Image download
Figure 1. 40KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS: Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 2002, 66:506-577. table of contents
  • [2]Lynd LR, van Zyl WH, McBride JE, Laser M: Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotechnol 2005, 16:577-583.
  • [3]Olson DG, McBride JE, Joe Shaw A, Lynd LR: Recent progress in consolidated bioprocessing. Curr Opin Biotechnol 2012, 23:396-405.
  • [4]Lamed R, Setter E, Bayer EA: Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J Bacteriol 1983, 156:828-836.
  • [5]Bayer EA, Setter E, Lamed R: Organization and distribution of the cellulosome in Clostridium thermocellum. J Bacteriol 1985, 163:552-559.
  • [6]Beguin P, Lemaire M: The cellulosome: an exocellular, multiprotein complex specialized in cellulose degradation. Crit Rev Biochem Mol Biol 1996, 31:201-236.
  • [7]Bayer EA, Belaich JP, Shoham Y, Lamed R: The cellulosomes: multienzyme machines for degradation of plant cell wall polysaccharides. Annu Rev Microbiol 2004, 58:521-554.
  • [8]Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR: Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci U S A 2008, 105:13769-13774.
  • [9]Shaw AJ, Hogsett DA, Lynd LR: Natural competence in Thermoanaerobacter and Thermoanaerobacterium species. Appl Environ Microbiol 2010, 76:4713-4719.
  • [10]Shaw AJ, Covalla SF, Hogsett DA, Herring CD: Marker removal system for Thermoanaerobacterium saccharolyticum and development of a markerless ethanologen. Appl Environ Microbiol 2011, 77:2534-2536.
  • [11]Shaw JA, Covalla SF, Miller BB, Firliet BT, Hogsett DA, Herring CD: Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production. Metab Eng 2012, 14:528-532.
  • [12]Bayer EA, Shimon LJ, Shoham Y, Lamed R: Cellulosomes-structure and ultrastructure. J Struct Biol 1998, 124:221-234.
  • [13]Gilbert HJ: Cellulosomes: microbial nanomachines that display plasticity in quaternary structure. Mol Microbiol 2007, 63:1568-1576.
  • [14]Zverlov VV, Kellermann J, Schwarz WH: Functional subgenomics of Clostridium thermocellum cellulosomal genes: identification of the major catalytic components in the extracellular complex and detection of three new enzymes. Proteomics 2005, 5:3646-3653.
  • [15]Hyeon JE, Yu KO, Suh DJ, Suh YW, Lee SE, Lee J, Han SO: Production of minicellulosomes from Clostridium cellulovorans for the fermentation of cellulosic ethanol using engineered recombinant Saccharomyces cerevisiae. FEMS Microbiol Lett 2010, 310:39-47.
  • [16]Tsai SL, Goyal G, Chen W: Surface display of a functional minicellulosome by intracellular complementation using a synthetic yeast consortium and its application to cellulose hydrolysis and ethanol production. Appl Environ Microbiol 2010, 76:7514-7520.
  • [17]Hyeon JE, Jeon WJ, Whang SY, Han SO: Production of minicellulosomes for the enhanced hydrolysis of cellulosic substrates by recombinant Corynebacterium glutamicum. Enzyme Microb Technol 2011, 48:371-377.
  • [18]Goyal G, Tsai SL, Madan B, DaSilva NA, Chen W: Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome. Microb Cell Fact 2011, 10:89. BioMed Central Full Text
  • [19]Anderson TD, Robson SA, Jiang XW, Malmirchegini GR, Fierobe HP, Lazazzera BA, Clubb RT: Assembly of minicellulosomes on the surface of Bacillus subtilis. Appl Environ Microbiol 2011, 77:4849-4858.
  • [20]Sun J, Wen F, Si T, Xu JH, Zhao H: Direct conversion of xylan to ethanol by recombinant Saccharomyces cerevisiae strains displaying an engineered minihemicellulosome. Appl Environ Microbiol 2012, 78:3837-3845.
  • [21]Caspi J, Irwin D, Lamed R, Li Y, Fierobe HP, Wilson DB, Bayer EA: Conversion of Thermobifida fusca free exoglucanases into cellulosomal components: comparative impact on cellulose-degrading activity. J Biotechnol 2008, 135:351-357.
  • [22]Caspi J, Barak Y, Haimovitz R, Irwin D, Lamed R, Wilson DB, Bayer EA: Effect of linker length and dockerin position on conversion of a Thermobifida fusca endoglucanase to the cellulosomal mode. Appl Environ Microbiol 2009, 75:7335-7342.
  • [23]Wieczorek AS, Martin VJ: Engineering the cell surface display of cohesins for assembly of cellulosome-inspired enzyme complexes on Lactococcus lactis. Microb Cell Fact 2010, 9:69. BioMed Central Full Text
  • [24]Fierobe HP, Bayer EA, Tardif C, Czjzek M, Mechaly A, Belaich A, Lamed R, Shoham Y, Belaich JP: Degradation of cellulose substrates by cellulosome chimeras. Substrate targeting versus proximity of enzyme components. J Biol Chem 2002, 277:49621-49630.
  • [25]Mingardon F, Perret S, Belaich A, Tardif C, Belaich JP, Fierobe HP: Heterologous production, assembly, and secretion of a minicellulosome by Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 2005, 71:1215-1222.
  • [26]Morais S, Barak Y, Caspi J, Hadar Y, Lamed R, Shoham Y, Wilson DB, Bayer EA: Cellulase-xylanase synergy in designer cellulosomes for enhanced degradation of a complex cellulosic substrate. MBio 2010, 1:e00285-00210.
  • [27]Krauss J, Zverlov VV, Schwarz WH: In vitro reconstitution of the complete Clostridium thermocellum cellulosome and synergistic activity on crystalline cellulose. Appl Environ Microbiol 2012, 78:4301-4307.
  • [28]Wen F, Sun J, Zhao H: Yeast surface display of trifunctional minicellulosomes for simultaneous saccharification and fermentation of cellulose to ethanol. Appl Environ Microbiol 2010, 76:1251-1260.
  • [29]Cho HY, Yukawa H, Inui M, Doi RH, Wong SL: Production of minicellulosomes from Clostridium cellulovorans in Bacillus subtilis WB800. Appl Environ Microbiol 2004, 70:5704-5707.
  • [30]Lilly M, Fierobe HP, van Zyl WH, Volschenk H: Heterologous expression of a Clostridium minicellulosome in Saccharomyces cerevisiae. FEMS Yeast Res 2009, 9:1236-1249.
  • [31]Fan LH, Zhang ZJ, Yu XY, Xue YX, Tan TW: Self-surface assembly of cellulosomes with two miniscaffoldins on Saccharomyces cerevisiae for cellulosic ethanol production. Proc Natl Acad Sci U S A 2012, 109:13260-13265.
  • [32]Mai V, Wiegel J: Advances in development of a genetic system for Thermoanaerobacterium spp.: expression of genes encoding hydrolytic enzymes, development of a second shuttle vector, and integration of genes into the chromosome. Appl Environ Microbiol 2000, 66:4817-4821.
  • [33]Zverlov VV, Klupp M, Krauss J, Schwarz WH: Mutations in the scaffoldin gene, cipA, of Clostridium thermocellum with impaired cellulosome formation and cellulose hydrolysis: insertions of a new transposable element, IS1447, and implications for cellulase synergism on crystalline cellulose. J Bacteriol 2008, 190:4321-4327.
  • [34]Podkaminer KK, Guss AM, Trajano HL, Hogsett DA, Lynd LR: Characterization of xylan utilization and discovery of a new endoxylanase in Thermoanaerobacterium saccharolyticum through targeted gene deletions. Appl Environ Microbiol 2012, 78:8441-8447.
  • [35]Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011, 8:785-786.
  • [36]Morag E, Bayer EA, Lamed R: Unorthodox intrasubunit interactions in the cellulosome of Clostridium-Thermocellum - identification of structural transitions induced in the S1-subunit. Appl Biochem Biotechnol 1992, 33:205-217.
  • [37]Lamed R, Kenig R, Morag E, Yaron S, Shoham Y, Bayer EA: Nonproteolytic cleavage of aspartyl proline bonds in the cellulosomal scaffoldin subunit from Clostridium thermocellum. Appl Biochem Biotechnol 2001, 90:67-73.
  • [38]Yaron S, Shimon LJ, Frolow F, Lamed R, Morag E, Shoham Y, Bayer EA: Expression, purification and crystallization of a cohesin domain from the cellulosome of Clostridium thermocellum. J Biotechnol 1996, 51:243-249.
  • [39]Mechaly A, Fierobe HP, Belaich A, Belaich JP, Lamed R, Shoham Y, Bayer EA: Cohesin-dockerin interaction in cellulosome assembly: a single hydroxyl group of a dockerin domain distinguishes between nonrecognition and high affinity recognition. J Biol Chem 2001, 276:9883-9888.
  • [40]Demishtein A, Karpol A, Barak Y, Lamed R, Bayer EA: Characterization of a dockerin-based affinity tag: application for purification of a broad variety of target proteins. J Mol Recognit 2010, 23:525-535.
  • [41]Leibovitz E, Beguin P: A new type of cohesin domain that specifically binds the dockerin domain of the Clostridium thermocellum cellulosome-integrating protein CipA. J Bacteriol 1996, 178:3077-3084.
  • [42]Leibovitz E, Ohayon H, Gounon P, Beguin P: Characterization and subcellular localization of the Clostridium thermocellum scaffoldin dockerin binding protein SdbA. J Bacteriol 1997, 179:2519-2523.
  • [43]Zhao G, Li H, Wamalwa B, Sakka M, Kimura T, Sakka K: Different binding specificities of S-layer homology modules from Clostridium thermocellum AncA, Slp1, and Slp2. Biosci Biotechnol Biochem 2006, 70:1636-1641.
  • [44]Lynd LR, Zhang Y: Quantitative determination of cellulase concentration as distinct from cell concentration in studies of microbial cellulose utilization: analytical framework and methodological approach. Biotechnol Bioeng 2002, 77:467-475.
  • [45]Lu Y, Zhang YH, Lynd LR: Enzyme-microbe synergy during cellulose hydrolysis by Clostridium thermocellum. Proc Natl Acad Sci U S A 2006, 103:16165-16169.
  • [46]Gefen G, Anbar M, Morag E, Lamed R, Bayer EA: Enhanced cellulose degradation by targeted integration of a cohesin-fused beta-glucosidase into the Clostridium thermocellum cellulosome. Proc Natl Acad Sci U S A 2012, 109:10298-10303.
  • [47]Lee JM, Venditti RA, Jameel H, Kenealy WR: Detoxification of woody hydrolyzates with activated carbon for bioconversion to ethanol by the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum. Biomass Bioenerg 2011, 35:626-636.
  • [48]Olson DG, Giannone RJ, Hettich RL, Lynd LR: Role of the CipA Scaffoldin protein in cellulose solubilization, as determined by targeted gene deletion and complementation in Clostridium thermocellum. J Bacteriol 2013, 195:733-739.
  • [49]Winston F, Dollard C, Ricupero-Hovasse SL: Construction of a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 1995, 11:53-55.
  • [50]Shanks RM, Kadouri DE, MacEachran DP, O’Toole GA: New yeast recombineering tools for bacteria. Plasmid 2009, 62:88-97.
  • [51]Currie DH, Mcbride J, Guss A: Modified cipA gene from Clostridium thermocellum for enhanced genetic stability. Filed: 4/21/2010. Patent Application Number PCT/US2010/031907.
  • [52]Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC: High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 2011, 77:8288-8294.
  文献评价指标  
  下载次数:25次 浏览次数:11次