期刊论文详细信息
Biotechnology for Biofuels
Carbon catabolite repression in Thermoanaerobacterium saccharolyticum
Christopher D Herring1  David A Hogsett1  Bethany B Miller1  A Joe Shaw1  Vasiliki Tsakraklides1 
[1]Mascoma Corporation, 67 Etna Road, Suite 300, New Hampshire, 03766, Lebanon
关键词: Anaerobe;    Thermophile;    Ethanol;    Lignocellulose;    Deoxyglucose;    HPr;    Glucose;    Arabinose;    Catabolite repression;   
Others  :  798199
DOI  :  10.1186/1754-6834-5-85
 received in 2012-07-31, accepted in 2012-10-25,  发布年份 2012
PDF
【 摘 要 】

Background

The thermophilic anaerobe Thermoanaerobacterium saccharolyticum is capable of directly fermenting xylan and the biomass-derived sugars glucose, cellobiose, xylose, mannose, galactose and arabinose. It has been metabolically engineered and developed as a biocatalyst for the production of ethanol.

Results

We report the initial characterization of the carbon catabolite repression system in this organism. We find that sugar metabolism in T. saccharolyticum is regulated by histidine-containing protein HPr. We describe a mutation in HPr, His15Asp, that leads to derepression of less-favored carbon source utilization.

Conclusion

Co-utilization of sugars can be achieved by mutation of HPr in T. saccharolyticum. Further manipulation of CCR in this organism will be instrumental in achieving complete and rapid conversion of all available sugars to ethanol.

【 授权许可】

   
2012 Tsakraklides et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140706104907254.pdf 399KB PDF download
Figure 4. 67KB Image download
Figure 3. 53KB Image download
Figure 2. 82KB Image download
Figure 1. 112KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Magasanik B: Catabolite repression. Cold Spring Harb Symp Quant Biol 1961, 26:249-256.
  • [2]Brückner R, Titgemeyer F: Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 2002, 209:141-148.
  • [3]Gorke B, Stulke J: Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat Rev Microbiol 2008, 6:613-624.
  • [4]Fujita Y: Carbon catabolite control of the metabolic network in Bacillus subtilis. Biosci Biotechnol Biochem 2009, 73:245-259.
  • [5]Warner JB, Lolkema JS: CcpA-dependent carbon catabolite repression in bacteria. Microbiol Mol Biol Rev 2003, 67:475-490.
  • [6]Galinier A, Kravanja M, Engelmann R, Hengstenberg W, Kilhoffer MC, Deutscher J, Haiech J: New protein kinase and protein phosphatase families mediate signal transduction in bacterial catabolite repression. Proc Natl Acad Sci U S A 1998, 95:1823-1828.
  • [7]Reizer J, Hoischen C, Titgemeyer F, Rivolta C, Rabus R, Stulke J, Karamata D, Saier MH Jr, Hillen W: A novel protein kinase that controls carbon catabolite repression in bacteria. Mol Microbiol 1998, 27:1157-1169.
  • [8]Mijakovic I, Poncet S, Galinier A, Monedero V, Fieulaine S, Janin J, Nessler S, Marquez JA, Scheffzek K, Hasenbein S, et al.: Pyrophosphate-producing protein dephosphorylation by HPr kinase/phosphorylase: a relic of early life? Proc Natl Acad Sci U S A 2002, 99:13442-13447.
  • [9]Henkin TM: The role of CcpA transcriptional regulator in carbon metabolism in Bacillus subtilis. FEMS Microbiol Lett 1996, 135:9-15.
  • [10]Deutscher J, Kessler U, Alpert CA, Hengstenberg W: Bacterial phosphoenolpyruvate-dependent phosphotransferase system: P-Ser-HPr and its possible regulatory function? Biochemistry 1984, 23:4455-4460.
  • [11]Reizer J, Novotny MJ, Hengstenberg W, Saier MH Jr: Properties of ATP-dependent protein kinase from Streptococcus pyogenes that phosphorylates a seryl residue in HPr, a phosphocarrier protein of the phosphotransferase system. J Bacteriol 1984, 160:333-340.
  • [12]Singh KD, Schmalisch MH, Stulke J, Gorke B: Carbon catabolite repression in Bacillus subtilis: quantitative analysis of repression exerted by different carbon sources. J Bacteriol 2008, 190:7275-7284.
  • [13]Galinier A, Haiech J, Kilhoffer MC, Jaquinod M, Stulke J, Deutscher J, Martin-Verstraete I: The Bacillus subtilis crh gene encodes a HPr-like protein involved in carbon catabolite repression. Proc Natl Acad Sci U S A 1997, 94:8439-8444.
  • [14]Deutscher J, Francke C, Postma PW: How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev 2006, 70:939-1031.
  • [15]Kolb A, Busby S, Buc H, Garges S, Adhya S: Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 1993, 62:749-795.
  • [16]Malan TP, Kolb A, Buc H, McClure WR: Mechanism of CRP-cAMP activation of lac operon transcription initiation activation of the P1 promoter. J Mol Biol 1984, 180:881-909.
  • [17]Shaw AJ, Jenney FE Jr, Adams MWW, Lynd LR: End-product pathways in the xylose fermenting bacterium, thermoanaerobacterium saccharolyticum. Enzyme Microb Technol 2008, 42:453-458.
  • [18]Shaw AJ, Podkaminer KK, Desai SG, Bardsley JS, Rogers SR, Thorne PG, Hogsett DA, Lynd LR: Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proc Natl Acad Sci U S A 2008, 105:13769-13774.
  • [19]Lin L, Song H, Tu Q, Qin Y, Zhou A, Liu W, He Z, Zhou J, Xu J: The thermoanaerobacter glycobiome reveals mechanisms of pentose and hexose co-utilization in bacteria. PLoS Genet 2011, 7:e1002318.
  • [20]Lee JM, Venditti RA, Jameel H, Kenealy WR: Detoxification of woody hydrolyzates with activated carbon for bioconversion to ethanol by the thermophilic anaerobic bacterium Thermoanaerobacterium saccharolyticum. Biomass Bioenergy 2011, 35:626-636.
  • [21]Hillmann F, Doring C, Riebe O, Ehrenreich A, Fischer RJ, Bahl H: The role of PerR in O2-affected gene expression of Clostridium acetobutylicum. J Bacteriol 2009, 191:6082-6093.
  • [22]Hyun HH, Zeikus JG: Regulation and genetic enhancement of glucoamylase and pullulanase production in Clostridium thermohydrosulfuricum. J Bacteriol 1985, 164:1146-1152.
  • [23]Hyun HH, Zeikus JG: Regulation and genetic enhancement of beta-amylase production in Clostridium thermosulfurogenes. J Bacteriol 1985, 164:1162-1170.
  • [24]Annous BA, Blaschek HP: Isolation and characterization of Clostridium acetobutylicum mutants with enhanced amylolytic activity. Appl Environ Microbiol 1991, 57:2544-2548.
  • [25]Kornberg H, Lambourne LT: The role of phosphoenolpyruvate in the simultaneous uptake of fructose and 2-deoxyglucose by Escherichia coli. Proc Natl Acad Sci U S A 1994, 91:11080-11083.
  • [26]Scholte BJ, Postma PW: Competition between two pathways for sugar uptake by the phosphoenolpyruvate-dependent sugar phosphotransferase system in Salmonella typhimurium. Eur J Biochem 1981, 114:51-58.
  • [27]Ye JJ, Saier MH Jr: Regulation of sugar uptake via the phosphoenolpyruvate-dependent phosphotransferase systems in Bacillus subtilis and Lactococcus lactis is mediated by ATP-dependent phosphorylation of seryl residue 46 in HPr. J Bacteriol 1996, 178:3557-3563.
  • [28]Ullmann A, Monod J: Cyclic AMP as an antagonist of catabolite repression in Escherichia coli. FEBS Lett 1968, 2:57-60.
  • [29]Isaacs H Jr, Chao D, Yanofsky C, Saier MH Jr: Mechanism of catabolite repression of tryptophanase synthesis in Escherichia coli. Microbiology 1994, 140(Pt 8):2125-2134.
  • [30]Christensen DP, Benson AK, Hutkins RW: Mutational analysis of the role of HPr in Listeria monocytogenes. Appl Environ Microbiol 1999, 65:2112-2115.
  • [31]Casabon I, Couture M, Vaillancourt K, Vadeboncoeur C: Kinetic studies of HPr, HPr(H15D), HPr(H15E), and HPr(His approximately P) phosphorylation by the Streptococcus salivarius HPr(Ser) kinase/phosphorylase. Biochemistry 2009, 48:10765-10774.
  • [32]Deutscher J, Kuster E, Bergstedt U, Charrier V, Hillen W: Protein kinase-dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria. Mol Microbiol 1995, 15:1049-1053.
  • [33]Reizer J, Bergstedt U, Galinier A, Kuster E, Saier MH Jr, Hillen W, Steinmetz M, Deutscher J: Catabolite repression resistance of gnt operon expression in Bacillus subtilis conferred by mutation of His-15, the site of phosphoenolpyruvate-dependent phosphorylation of the phosphocarrier protein HPr. J Bacteriol 1996, 178:5480-5486.
  • [34]Jankovic I, Bruckner R: Carbon catabolite repression by the catabolite control protein CcpA in Staphylococcus xylosus. J Mol Microbiol Biotechnol 2002, 4:309-314.
  • [35]Jankovic I, Egeter O, Bruckner R: Analysis of catabolite control protein A-dependent repression in Staphylococcus xylosus by a genomic reporter gene system. J Bacteriol 2001, 183:580-586.
  • [36]Fiegler H, Bassias J, Jankovic I, Bruckner R: Identification of a gene in Staphylococcus xylosus encoding a novel glucose uptake protein. J Bacteriol 1999, 181:4929-4936.
  • [37]Wagner E, Marcandier S, Egeter O, Deutscher J, Gotz F, Bruckner R: Glucose kinase-dependent catabolite repression in Staphylococcus xylosus. J Bacteriol 1995, 177:6144-6152.
  • [38]Ye JJ, Reizer J, Cui X, Saier MH Jr: ATP-dependent phosphorylation of serine-46 in the phosphocarrier protein HPr regulates lactose/H+ symport in Lactobacillus brevis. Proc Natl Acad Sci U S A 1994, 91:3102-3106.
  • [39]Djordjevic GM, Tchieu JH, Saier MH Jr: Genes involved in control of galactose uptake in Lactobacillus brevis and reconstitution of the regulatory system in Bacillus subtilis. J Bacteriol 2001, 183:3224-3236.
  • [40]Poolman B, Knol J, Mollet B, Nieuwenhuis B, Sulter G: Regulation of bacterial sugar-H+ symport by phosphoenolpyruvate-dependent enzyme I/HPr-mediated phosphorylation. Proc Natl Acad Sci U S A 1995, 92:778-782.
  • [41]Flores N, Xiao J, Berry A, Bolivar F, Valle F: Pathway engineering for the production of aromatic compounds in Escherichia coli. Nat Biotechnol 1996, 14:620-623.
  • [42]Xiao H, Gu Y, Ning Y, Yang Y, Mitchell WJ, Jiang W, Yang S: Confirmation and elimination of xylose metabolism bottlenecks in glucose phosphoenolpyruvate-dependent phosphotransferase system-deficient clostridium acetobutylicum for simultaneous utilization of glucose, xylose, and arabinose. Appl Environ Microbiol 2011, 77:7886-7895.
  • [43]Mai V, Lorenz WW, Wiegel J: Transformation of Thermoanaerobacterium sp. strain JW/SL-YS485 with plasmid pIKM1 conferring kanamycin resistance. FEMS Microbiol Lett 1997, 148:163-167.
  • [44]Shaw AJ, Covalla SF, Hogsett DA, Herring CD: Marker removal system for Thermoanaerobacterium saccharolyticum and development of a markerless ethanologen. Appl Environ Microbiol 2011, 77:2534-2536.
  • [45]Shaw AJ, Hogsett DA, Lynd LR: Natural competence in Thermoanaerobacter and Thermoanaerobacterium species. Appl Environ Microbiol 2010, 76:4713-4719.
  文献评价指标  
  下载次数:61次 浏览次数:42次