期刊论文详细信息
Journal of Inflammation
Antioxidant and anti-inflammatory activity of Ocimum labiatum extract and isolated labdane diterpenoid
Research
Pascaline Fonteh1  Ronel Bruwer1  Petrina Kapewangolo2  Debra Meyer3  Justin J Omolo4 
[1] Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield Campus, 0002, Pretoria, South Africa;Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield Campus, 0002, Pretoria, South Africa;Present address: Chemistry & Biochemistry department, Faculty of Science, University of Namibia, 9000, Windhoek, Namibia;Department of Biochemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield Campus, 0002, Pretoria, South Africa;Present address: Department of Biochemistry, Faculty of Sciences, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, Johannesburg, South Africa;Molecular Sciences Institute, School of Chemistry, University of the Witwatersrand, P.O. Box 2050, Johannesburg, South Africa;Present address: Department of Traditional Medicine, National Institute for Medical Research, P. O Box 9653, Dar es Salaam, Tanzania;
关键词: Ocimum labiatum;    Labdane diterpenoid;    Inflammatory cytokines;    Nitric oxide;    Antioxidant;    AP-1;   
DOI  :  10.1186/s12950-015-0049-4
 received in 2013-08-05, accepted in 2015-01-04,  发布年份 2015
来源: Springer
PDF
【 摘 要 】

BackgroundPlants from the genus Ocimum are used as folk medicine for treating various diseases including inflammatory and immune-related diseases. Numerous reports have suggested plant extracts and their constituents as possible anti-inflammatory agents. Here, in vitro evidence of Ocimum labiatum’s immune-enhancing and antioxidant properties is presented for the first time.MethodsThe anti-inflammatory effect of O. labiatum ethanolic extract and an isolated diterpenoid was determined using a cytometric bead array (CBA) technique. The effect on phytohemagglutinin (PHA)-induced nitric oxide (NO) production in peripheral blood mononuclear cells (PBMCs) was also assessed. A battery of antioxidant assays were used for detecting antioxidant activity while the anti-inflammatory mechanism was evaluated using an ELISA-based activator protein (AP-1) (c-Jun) assay. Cytotoxicity was determined on TZM-bl and PBMCs using a tetrazolium dye and confirmed by a novel label-free real-time assay.ResultsA 25 μg/mL non-cytotoxic concentration of O. labiatum extract significantly (p < 0.05) inhibited the production of pro-inflammatory cytokines; IL-2, IL-4, IL-6 and IL-17A. Except for the dual acting pro- or anti-inflammatory cytokine, IL-6, which was upregulated, a non-cytotoxic 50 μM concentration of the isolated labdane diterpenoid compound significantly (p < 0.05) decreased the production of all the pro-inflammatory cytokines. In the anti-inflammatory pathway studies, the compound also inhibited AP-1 significantly (p < 0.05) at 50 μM. The extract demonstrated strong, dose dependent antioxidant activity with IC50 values ranging from 13 ± 0.8 to 54.86 ± 1.28 μg/mL while the terpene had no antioxidant property. The extract and diterpenoid decreased the production of the inflammatory mediator NO, at non-cytotoxic concentrations. The CC50 of the extract in TZM-bl and PBMCs was 62.6 ± 0.6 and 30.1 ± 0.4 μg/mL while that of the compound was 112.6 ± 0.2 and 70 ± 0.4 μM respectively. The real time studies confirmed tetrazolium dye assessed viability and also detected a unique growth pattern for the plant materials compared to untreated cells.ConclusionsO. labiatum extract demonstrated promising anti-inflammatory and antioxidant properties while the terpenoid showed anti-inflammatory but no antioxidant activity. The anti-inflammatory mechanism of the terpene was a result of inhibition of AP-1. These data represents promising first steps towards the development of naturally derived anti-inflammation drugs.

【 授权许可】

Unknown   
© Kapewangolo et al.; licensee BioMed Central. 2015. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311100349656ZK.pdf 1036KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  文献评价指标  
  下载次数:2次 浏览次数:0次