期刊论文详细信息
BMC Bioinformatics
Variational inference for rare variant detection in deep, heterogeneous next-generation sequencing data
Methodology Article
Fan Zhang1  Patrick Flaherty2 
[1] Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, 01609, Worcester, USA;Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, 01609, Worcester, USA;Department of Mathematics and Statistics, University of Massachusetts, Amherst, 710 N. Pleasant Street, 01003, Amherst, USA;
关键词: Single nucleotide variant detection;    Next-generation sequencing;    Bayesian statistical method;    Variational inference;   
DOI  :  10.1186/s12859-016-1451-5
 received in 2016-06-17, accepted in 2016-12-22,  发布年份 2017
来源: Springer
PDF
【 摘 要 】

BackgroundThe detection of rare single nucleotide variants (SNVs) is important for understanding genetic heterogeneity using next-generation sequencing (NGS) data. Various computational algorithms have been proposed to detect variants at the single nucleotide level in mixed samples. Yet, the noise inherent in the biological processes involved in NGS technology necessitates the development of statistically accurate methods to identify true rare variants.ResultsWe propose a Bayesian statistical model and a variational expectation maximization (EM) algorithm to estimate non-reference allele frequency (NRAF) and identify SNVs in heterogeneous cell populations. We demonstrate that our variational EM algorithm has comparable sensitivity and specificity compared with a Markov Chain Monte Carlo (MCMC) sampling inference algorithm, and is more computationally efficient on tests of relatively low coverage (27× and 298×) data. Furthermore, we show that our model with a variational EM inference algorithm has higher specificity than many state-of-the-art algorithms. In an analysis of a directed evolution longitudinal yeast data set, we are able to identify a time-series trend in non-reference allele frequency and detect novel variants that have not yet been reported. Our model also detects the emergence of a beneficial variant earlier than was previously shown, and a pair of concomitant variants.ConclusionsWe developed a variational EM algorithm for a hierarchical Bayesian model to identify rare variants in heterogeneous next-generation sequencing data. Our algorithm is able to identify variants in a broad range of read depths and non-reference allele frequencies with high sensitivity and specificity.

【 授权许可】

CC BY   
© The Author(s) 2017

【 预 览 】
附件列表
Files Size Format View
RO202311099532567ZK.pdf 1350KB PDF download
12864_2017_4132_Article_IEq43.gif 1KB Image download
12864_2016_3098_Article_IEq87.gif 1KB Image download
12864_2017_3733_Article_IEq57.gif 1KB Image download
12864_2017_3777_Article_IEq18.gif 1KB Image download
12864_2017_3733_Article_IEq59.gif 1KB Image download
12864_2017_3733_Article_IEq61.gif 1KB Image download
12864_2016_2789_Article_IEq42.gif 1KB Image download
12888_2017_1557_Article_IEq1.gif 1KB Image download
12864_2017_3733_Article_IEq64.gif 1KB Image download
12864_2016_2696_Article_IEq4.gif 1KB Image download
12864_2017_3655_Article_IEq8.gif 1KB Image download
12902_2017_161_Article_IEq1.gif 1KB Image download
12902_2017_161_Article_IEq3.gif 1KB Image download
12864_2017_4269_Article_IEq6.gif 1KB Image download
12864_2017_3500_Article_IEq3.gif 1KB Image download
12864_2016_2821_Article_IEq12.gif 1KB Image download
12864_2017_3655_Article_IEq12.gif 1KB Image download
【 图 表 】

12864_2017_3655_Article_IEq12.gif

12864_2016_2821_Article_IEq12.gif

12864_2017_3500_Article_IEq3.gif

12864_2017_4269_Article_IEq6.gif

12902_2017_161_Article_IEq3.gif

12902_2017_161_Article_IEq1.gif

12864_2017_3655_Article_IEq8.gif

12864_2016_2696_Article_IEq4.gif

12864_2017_3733_Article_IEq64.gif

12888_2017_1557_Article_IEq1.gif

12864_2016_2789_Article_IEq42.gif

12864_2017_3733_Article_IEq61.gif

12864_2017_3733_Article_IEq59.gif

12864_2017_3777_Article_IEq18.gif

12864_2017_3733_Article_IEq57.gif

12864_2016_3098_Article_IEq87.gif

12864_2017_4132_Article_IEq43.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  文献评价指标  
  下载次数:7次 浏览次数:4次