期刊论文详细信息
BMC Complementary and Alternative Medicine
Effect of long-term supplementation of low molecular weight chitosan oligosaccharide (GO2KA1) on fasting blood glucose and HbA1c in db/db mice model and elucidation of mechanism of action
Research Article
Emmanouil Apostolidis1  Kyoung-Soo Ha2  Sung-Hoon Jo2  Young-In Kwon2  Young-Cheul Kim3  Sung-Chul Kim4  Jong-Gwan Kim4 
[1] Department of Chemistry and Food Science, Framingham State University, 01701, Framingham, MA, USA;Department of Food and Nutrition, Hannam University, 305-811, Daejeon, South Korea;Department of Nutrition, University of Massachusetts, 01003, Amherst, MA, USA;Kunpoong Bio Co., Ltd., Gumnung-ri, 407–11, Hallim-eup, Jeju Special Self Governing Province, 695-923, Jeju, South Korea;
关键词: Type 2 diabetes;    Pre-diabetes;    Blood glucose;    Glucosidase inhibitors;    Low molecular chitosan oligosacharide;    GO2KA1;   
DOI  :  10.1186/1472-6882-14-272
 received in 2013-10-16, accepted in 2014-07-21,  发布年份 2014
来源: Springer
PDF
【 摘 要 】

BackgroundType 2 diabetes is a serious problem for developed countries. Prevention of prediabetes progression to type 2 diabetes with the use of natural products appears to a cost-effective solution. Previously we showed that enzymatically digested low molecular weight chitosan-oligosaccharide with molecular weight (MW) below 1,000 Da (GO2KA1) has potential for hyperglycemia management.MethodsIn this study we evaluated the effect of long-term supplementation of GO2KA1 on hyperglycemia using a db/db mice model. Additionally, we evaluated the effect of GO2KA1 on sucrase and glucoamylase activities and expression, using the same db/db mice model.ResultsAfter 42 days we observed that GO2KA1 supplementation reduced both the blood glucose level and HbA1c in a similar manner with a known anti-diabetic drug, acarbose. When the sucrase and glucoamylase activities of GO2KA1 and control mice were evaluated using enzymatic assay, we observed that GO2KA1 significantly inhibited sucrase in all 3 parts of the intestine, while glucoamylase activity was significantly reduced only in the middle and lower part. When the sucrase-isomaltase (SI) complex expression on mRNA level was evaluated, we observed that GO2KA1 had minimal inhibitory effect on the upper part, more pronounced inhibitory effect on the middle part, while the highest inhibition was observed on the lower part. Our findings suggest that long-term GO2KA1 supplementation in db/db mice results to significant blood glucose and HbA1c reduction, to levels similar with those of acarbose. Furthermore, our findings confirm previous in vitro observations that GO2KA1 has inhibitory effect on carbohydrate hydrolysis enzymes, namely sucrase, maltase and SI complex.ConclusionsResults from this study provide a strong rationale for the use of GO2KA1 for type 2 diabetes prevention, via inhibition of carbohydrate hydrolysis enzymes. Based on the findings of this animal trial, clinical trials will be designed and pursued.

【 授权许可】

Unknown   
© Kim et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311097606665ZK.pdf 429KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  文献评价指标  
  下载次数:1次 浏览次数:1次