BMC Biotechnology | |
Enzymatic properties of Thermoanaerobacterium thermosaccharolyticum β-glucosidase fused to Clostridium cellulovoranscellulose binding domain and its application in hydrolysis of microcrystalline cellulose | |
Research Article | |
Song Fan1  Jingcong Xie1  Qian Pang2  Jianjun Pei2  Fei Wang2  Linguo Zhao2  | |
[1] College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, China;College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, China;Jiangsu key Lab of Biomass Based Green Fuels and Chemicals, Nanjing, China; | |
关键词: Glucose-tolerant β-glucosidase; Cellulose binding domain (CBD); Fusion protein; Immobilization; | |
DOI : 10.1186/1472-6750-13-101 | |
received in 2013-09-04, accepted in 2013-11-11, 发布年份 2013 | |
来源: Springer | |
【 摘 要 】
BackgroundThe complete degradation of the cellulose requires the synergistic action of endo-β-glucanase, exo-β-glucanase, and β-glucosidase. But endo-β-glucanase and exo-β-glucanase can be recovered by solid–liquid separation in cellulose hydrolysis by their cellulose binding domain (CBD), however, the β-glucosidases cannot be recovered because of most β-glucosidases without the CBD, so additional β-glucosidases are necessary for the next cellulose degradation. This will increase the cost of cellulose degradation.ResultsThe glucose-tolerant β-glucosidase (BGL) from Thermoanaerobacterium thermosaccharolyticum DSM 571 was fused with cellulose binding domain (CBD) of Clostridium cellulovorans cellulosome anchoring protein by a peptide linker. The fusion enzyme (BGL-CBD) gene was overexpressed in Escherichia coli with the maximum β-glucosidase activity of 17 U/mL. Recombinant BGL-CBD was purified by heat treatment and following by Ni-NTA affinity. The enzymatic characteristics of the BGL-CBD showed optimal activities at pH 6.0 and 65°C. The fusion of CBD structure enhanced the hydrolytic efficiency of the BGL-CBD against cellobiose, which displayed a 6-fold increase in Vmax/Km in comparison with the BGL. A gram of cellulose was found to absorb 643 U of the fusion enzyme (BGL-CBD) in pH 6.0 at 50°C for 25 min with a high immobilization efficiency of 90%. Using the BGL-CBD as the catalyst, the yield of glucose reached a maximum of 90% from 100 g/L cellobiose and the BGL-CBD could retain over 85% activity after five batches with the yield of glucose all above 70%. The performance of the BGL-CBD on microcrystalline cellulose was also studied. The yield of the glucose was increased from 47% to 58% by adding the BGL-CBD to the cellulase, instead of adding the Novozyme 188.ConclusionsThe hydrolytic activity of BGL-CBD is greater than that of the Novozyme 188 in cellulose degradation. The article provides a prospect to decrease significantly the operational cost of the hydrolysis process.
【 授权许可】
Unknown
© Zhao et al.; licensee BioMed Central Ltd. 2013. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202311095008281ZK.pdf | 570KB | download |
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]