期刊论文详细信息
BMC Cancer
Optimisation of immunofluorescence methods to determine MCT1 and MCT4 expression in circulating tumour cells
Technical Advance
Caroline Dive1  Stephen Kershaw1  Jeffrey Cummings1  Karen Morris1  Jonathan Tugwood1 
[1] Clinical and Experimental Pharmacology Group, Manchester Cancer Research Centre, Cancer Research UK Manchester Institute, University of Manchester, M20 4BX, Manchester, UK;
关键词: Monocarboxylate transporters;    MCT1;    MCT4;    Biomarkers;    Immunofluorescence;    Circulating tumour cells;    Optimisation;    AZD3965;   
DOI  :  10.1186/s12885-015-1382-y
 received in 2014-11-20, accepted in 2015-04-28,  发布年份 2015
来源: Springer
PDF
【 摘 要 】

BackgroundThe monocarboxylate transporter-1 (MCT1) represents a novel target in rational anticancer drug design while AZD3965 was developed as an inhibitor of this transporter and is undergoing Phase I clinical trials (http://www.clinicaltrials.gov/show/NCT01791595). We describe the optimisation of an immunofluorescence (IF) method for determination of MCT1 and MCT4 in circulating tumour cells (CTC) as potential prognostic and predictive biomarkers of AZD3965 in cancer patients.MethodsAntibody selectivity was investigated by western blotting (WB) in K562 and MDAMB231 cell lines acting as positive controls for MCT1 and MCT4 respectively and by flow cytometry also employing the control cell lines. Ability to detect MCT1 and MCT4 in CTC as a 4th channel marker utilising the Veridex™ CellSearch system was conducted in both human volunteer blood spiked with control cells and in samples collected from small cell lung cancer (SCLC) patients.ResultsExperimental conditions were established which yielded a 10-fold dynamic range (DR) for detection of MCT1 over MCT4 (antibody concentration 6.25 μg/mL; integration time 0.4 seconds) and a 5-fold DR of MCT4 over MCT 1 (8 μg/100 μL and 0.8 seconds). The IF method was sufficiently sensitive to detect both MCT1 and MCT4 in CTCs harvested from cancer patients.ConclusionsThe first IF method has been developed and optimised for detection of MCT 1 and MCT4 in cancer patient CTC.

【 授权许可】

Unknown   
© Kershaw et al.; licensee BioMed Central. 2015. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311092606548ZK.pdf 1993KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  文献评价指标  
  下载次数:0次 浏览次数:0次