期刊论文详细信息
BMC Genetics
Genetic diversity and population structure of the Tibetan poplar (Populus szechuanica var. tibetica) along an altitude gradient
Proceedings
Rongling Wu1  Wenhao Bo1  Dengfeng Shen1  Fang Xu1 
[1] Center for Computational Biology, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China;
关键词: Gene flow;    Microsatellite;    Genetic diversity;    Qinghai-Tibet plateau;    Populus szechuanica var. tibetica;   
DOI  :  10.1186/1471-2156-15-S1-S11
来源: Springer
PDF
【 摘 要 】

BackgroundThe Tibetan poplar (Populus szechuanica var. tibetica Schneid), which is distributed at altitudes of 2,000-4,500 m above sea level, is an ecologically important species of the Qinghai-Tibet Plateau and adjacent areas. However, the genetic adaptations responsible for its ability to cope with the harsh environment remain unknown.ResultsIn this study, a total of 24 expressed sequence tag microsatellite (EST-SSR) markers were used to evaluate the genetic diversity and population structure of Tibetan poplars along an altitude gradient. The 172 individuals were of genotypes from low-, medium- and high-altitude populations, and 126 alleles were identified. The expected heterozygosity (HE) value ranged from 0.475 to 0.488 with the highest value found in low-altitude populations and the lowest in high-altitude populations. Genetic variation was low among populations, indicating a limited influence of altitude on microsatellite variation. Low genetic differentiation and high levels of gene flow were detected both between and within the populations along the altitude gradient. An analysis of molecular variance (AMOVA) showed that 6.38% of the total molecular variance was attributed to diversity between populations, while 93.62% variance was associated with differences within populations. There was no clear correlation between genetic variation and altitude, and a Mantel test between genetic distance and altitude resulted in a coefficient of association of r = 0.001, indicating virtually no correlation.ConclusionMicrosatellite genotyping results showing genetic diversity and low differentiation suggest that extensive gene flow may have counteracted local adaptations imposed by differences in altitude. The genetic analyses carried out in this study provide new insight for conservation and optimization of future arboriculture.

【 授权许可】

Unknown   
© Shen et al.; licensee BioMed Central Ltd. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

【 预 览 】
附件列表
Files Size Format View
RO202311092563884ZK.pdf 1863KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  文献评价指标  
  下载次数:4次 浏览次数:0次