期刊论文详细信息
BMC Genetics
Genetic diversity and genetic structure of the Siberian roe deer (Capreolus pygargus) populations from Asia
Kyung Seok Kim3  Hang Lee1  Mi-Sook Min1  Yong-Su Park5  Jang Geun Oh6  Damdingiin Bayarlkhagva7  Alexander Argunov2  Inna Voloshina4  Nickolay Markov8  Yun Sun Lee1 
[1] Conservation Genome Resource Bank for Korean Wildlife, College of Veterinary Medicine, Seoul National University, Gwanak-gu 151-742, Seoul, Republic of Korea;Institute for Biological problems of Cryolihtozone Siberian Branch of Russian Academy of Sciences, Yakutsk 677980, Russia;Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames 50011, IA, USA;Lazovsky State Nature Reserve, Lazo 692980, Primorsky Krai, Russia;Department of Conservation Ecology, National Institute of Ecology, 1210, Geumgang-ro, Maseo-myeon, Seocheon-gun 325-813, Chungcheongnam-do, South Korea;Research Institute for Hallasan, Jeju Special Self-Governing Province, Jeju 690-815, Republic of Korea;Department of Molecular Biology and Genetics, National University of Mongolia, Ulaanbaatar 210646, Mongolia;Institute of Plant and Animal Ecology Urals Branch of Russian Academy of Sciences, Yekaterinburg 620144, Russia
关键词: Capreolus pygargus;    Siberian roe deer;    Genetic structure;    Genetic diversity;    Gene flow;    Microsatellite;   
Others  :  1223575
DOI  :  10.1186/s12863-015-0244-6
 received in 2015-02-02, accepted in 2015-06-29,  发布年份 2015
PDF
【 摘 要 】

Background

The roe deer, Capreolus sp., is one of the most widespread meso-mammals of Palearctic distribution, and includes two species, the European roe deer, C. capreolus inhabiting mainly Europe, and the Siberian roe deer, C. pygargus, distributed throughout continental Asia. Although there are a number of genetic studies concerning European roe deer, the Siberian roe deer has been studied less, and none of these studies use microsatellite markers. Natural processes have led to genetic structuring in wild populations. To understand how these factors have affected genetic structure and connectivity of Siberian roe deer, we investigated variability at 12 microsatellite loci for Siberian roe deer from ten localities in Asia.

Results

Moderate levels of genetic diversity (HE= 0.522 to 0.628) were found in all populations except in Jeju Island, South Korea, where the diversity was lowest (HE  = 0.386). Western populations showed relatively low genetic diversity and higher degrees of genetic differentiation compared with eastern populations (mean Ar = 3.54 (east), 2.81 (west), mean FST= 0.122). Bayesian-based clustering analysis revealed the existence of three genetically distinct groups (clusters) for Siberian roe deer, which comprise of the Southeastern group (Mainland Korea, Russian Far East, Trans-Baikal region and Northern part of Mongolia), Northwestern group (Western Siberia and Ural in Russia) and Jeju Island population. Genetic analyses including AMOVA (FRT= 0.200), Barrier and PCA also supported genetic differentiation among regions separated primarily by major mountain ridges, suggesting that mountains played a role in the genetic differentiation of Siberian roe deer. On the other hand, genetic evidence also suggests an ongoing migration that may facilitate genetic admixture at the border areas between two groups.

Conclusions

Our results reveal an apparent pattern of genetic differentiation among populations inhabiting Asia, showing moderate levels of genetic diversity with an east-west gradient. The results suggest at least three distinct management units of roe deer in continental Asia, although genetic admixture is evident in some border areas. The insights obtained from this study shed light on management of Siberian roe deer in Asia and may be applied in conservation of local populations of Siberian roe deer.

【 授权许可】

   
2015 Lee et al.

【 预 览 】
附件列表
Files Size Format View
20150903013737978.pdf 2480KB PDF download
Fig. 6. 47KB Image download
Fig. 5. 20KB Image download
Fig. 4. 32KB Image download
Fig. 3. 47KB Image download
Figure 5. 19KB Image download
Fig. 1. 111KB Image download
【 图 表 】

Fig. 1.

Figure 5.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Bouvrain G, Geraads D, Jehenne Y. New data relating to the classification of the Cervidae (Artiodactyla, Mammalia). Zool Anz. 1989; 223:82-90.
  • [2]Danilkin AA. Behavioural ecology of Siberian and European roe deer. Chapman & Hall, London; 1996.
  • [3]Matosiuk M, Borkowska A, Świsłocka M, Mirski P, Borowski Z, Krysiuk K et al.. Unexpected population genetic structure of European roe deer in Poland: an invasion of the mtDNA genome from Siberian roe deer. Mol Ecol. 2014; 23:2559-2572.
  • [4]Hewitt G. The genetic legacy of the Quaternary ice ages. Nature. 2000; 405:907-913.
  • [5]Segelbacher G, Cushman SA, Epperson BK, Fortin M, Francois O, Hardy OJ et al.. Applications of landscape genetics in conservation biology: concepts and challenges. Conserv Genet. 2010; 11:375-385.
  • [6]Breitenmoser U. Large predators in the Alps: the fall and rise of man’s competitors. Biol Conserv. 1998; 83:279-289.
  • [7]Maehr DS, Noss RF, Larkin JL. Large Mammal Restoration. Island Press, Washington, DC; 2001.
  • [8]Harris RB, Wall WA, Allendorf FW. Genetic consequences of hunting: what do we know and what should we do? Wildlife Soc B. 2002; 30:634-643.
  • [9]Korotkevich YL, Danilkin AA. Phylogeny, evolution and systematics. In: European and Siberian roe deer. Sokolov VE, editor. Nauka press, Moscow; 1992: p.8-21.
  • [10]Danilkin AA. Capreolus pygargus. Mamm Spec. 1995; 512:1-7.
  • [11]Lorenzini R, Lovari S, Masseti M. The rediscovery of the Italian roe deer: genetic differentiation and management implications. Ital J Zool. 2002; 69:367-379.
  • [12]Vernesi C, Pecchioli E, Caramelli D, Tiedemann R, Randi E, Bertorelle G. The genetic structure of natural and reintroduced roe deer (Capreolus capreolus) populations in the Alps and central Italy, with reference to the mitochondrial DNA phylogeography of Europe. Mol Ecol. 2002; 11:1285-1297.
  • [13]Lorenzini R, San José C, Braza C, Aragón S. Genetic differentiation and phylogeography of roe deer in Spain, as suggested by mitochondrial DNA and microsatellite analysis. Ital J Zool. 2003; 70:89-99.
  • [14]Randi E, Alves PC, Carranza J, Milosevic-Zlatanovic S, Sfougaris A, Mucci N. Phylogeography of roe deer (Capreolus capreolus) populations: the effects of historical genetic subdivisions and recent nonequilibrium dynamics. Mol Ecol. 2004; 13:3071-3083.
  • [15]Lorenzini R, Lovari S. Genetic diversity and phylogeography of the European roe deer: the refuge area theory revisited. Biol J Linn Soc. 2006; 88:85-100.
  • [16]Royo LJ, Pajares G, Alvarez I, Fernandez I, Goy-Ache F. Genetic variability and differentiation in Spanish roe deer (Capreolus capreolus): a phylogeographic reassessment within the European framework. Mol Phylogenet Evol. 2007; 42:47-61.
  • [17]Kamieniarz R, Wolc A, Lisowski M, Dabert M, Grajewski B, Steppa R et al.. Inter and intra subpopulation genetic variability of roe deer (Capreolus capreolus L.) assessed by I and II class genetic markers. Folia Biol-Prague. 2011; 59:127-133.
  • [18]Baker KH, Hoelzel AR. Evolution of population genetic structure of the British roe deer by natural and anthropogenic processes (Capreolus capreolus). Ecol Evol. 2013; 3:89-102.
  • [19]Lorenzini R, Garofalo L, Qin X, Voloshina I, Lovari S. Global phylogeography of the genus Capreolus (Artiodactyla: Cervidae), a Palaearctic meso-mammal. Zool J Linn Soc. 2014; 170:209-221.
  • [20]Randi E, Pierpaoli M, Danilkin A. Mitochondrial DNA polymorphism in populations of Siberian and European roe deer (Capreolus pygargus and C. capreolus). Heredity. 1998; 80:429-437.
  • [21]Zvychainaya EY, Danilkin AA, Kholodova MV, Sipkoa TP, Berberb AP. Analysis of the variability of the control region and cytochrome b gene of mtDNA of Capreolus pygargus Pall. Biol Bull. 2011; 38:434-439.
  • [22]Sheremetyeva IN, Sheremetyev IS, Kartavtseva IV, Zhuravlev Yu N. Polymorphism of a short fragment of the mitochondrial genome control region (D-loop) in the Siberian roe deer Capreolus pygargus Pallas, 1771 (Artiodactyla, Cervidae) from the Russian Far East. Russ J Genet. 2010; 46:595-602.
  • [23]Evanno S, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005; 14:2611-2620.
  • [24]Garza JC, Williamson EG. Detection of reduction in population size using data from microsatellite loci. Mol Ecol. 2001; 10:305-318.
  • [25]Zachos FE, Hmwe SS, Hartl GB. Biochemical and DNA markers yield strikingly different results regarding variability and differentiation of roe deer (Capreolus capreolus, Artiodactyla: Cervidae) population from northern Germany. J Zool Syst Evol Res. 2006; 44:167-174.
  • [26]Filonov KP. Peculiarities of the South Urals Siberian roe deer population. Lesnaya Promishlennost press, Moscow; 1974.
  • [27]Ushkov SL. Roe deer migrations in the Southern Urals. Bulletin of the Moscow society of the ispitateley prirodi. 1954; 59:9-12.
  • [28]Kucherenko S, Shvets V. The roe deer of the Amur-Ussuri region. Okhota i okhotnichie khozyaistvo. 1977; 3:22-23.
  • [29]Shvets VG. Decrease of roe deer numbers in the Khabaravsk region part of Amur area. In: Ungulates of the USSR. Sokolov VE, editor. Nauka press, Moscow; 1975: p.352.
  • [30]Danilkin AA, Dulamtseren S. The roe deer in Mongolia. Okhota i okhotnichie khozyaistvo. 1981; 3:44-45.
  • [31]Kryukov AP. Comparative phylogeographic patterns of several vertebrates in the east palearctic. Mosc Univ Biol Sci Bull. 2010; 65:184-186.
  • [32]Zabelin VI. To the problem of variantion of environment and evolution of Pleistocene-Holocene fauna of Altai-Sayan mountain region. Baikalsky zoologichesky zhurnal. 2012; 11:5-11.
  • [33]Choi KH. Spatio-temporal analysis of roe deer population in Jeju using age-structured population and habitat suitability models. Seoul National University, Department of Environmental Planning, Master thesis; 2011.
  • [34]Yoon SI. A study on ecological characteristics of roe deer (Capreolus pygargus tianschanicus) in jeju island. PhD thesis. Korea University, Forest Resources, Korea; 2003.
  • [35]Oh JG. Characteristics of ecological behaviour of roe deer (Capreolus pygargus tianschanicus) in jeju island. PhD thesis. Korea National University of Education, Biology Education Major, Korea; 2004.
  • [36]Danilkin AA. Olen’i (Cervidae). GEOS press, Moscow; 1999.
  • [37]Koh HS, Bayarlkhagva D, Jang KH, Han ED, Jo JE, Ham EJ et al.. Genetic divergence of the Siberian roe deer from Korean Jeju Island (Capreolus pygargus ochraceus), reexamined from nuclear IRBP and mitochondrial cytochrome b and control region sequences of C. pygargus. J Biol Res. 2013; 19:46-55.
  • [38]Formozov AN. Snow cover in the life of mammals and birds of the USSR. MNS Press, Moscow; 1946.
  • [39]Nasimovish AA. The snow cover role in the life of ungulate animals of the USSR. USSR Academy of Sciences Publishing House, Moscow; 1955.
  • [40]Danilkin AA. Populations structure. In: European and Siberian roe deer. Sokolov VE, editor. Nauka press, Moscow; 1992: p.160-184.
  • [41]Danilkin AA, Darman YA, Minayev AN. The seasonal migrations of a Siberian roe deer population. Rev Ecol-Terre Vie. 1992; 47:231-243.
  • [42]Vorobieva NV, Sherbakov DY, Druzhkova AS, Stanyon R, Tsybankov AA, Vasil’ev SK et al.. Genotyping of Capreolus pygargus fossil DNA from Denisova Cave reveals phylogenetic relationships between ancient and modern populations. PLoS One. 2011; 6:e24045.
  • [43]Argunov AV. Formation of the Range of the Siberian Roe Deer (Capreolus pygargus, Cervidae) and Its Present Distribution in Yakutia. Biol Bull. 2013; 40:692-697.
  • [44]Boeskorov GG, Danilkin AA. On the taxonomic status of the Siberian Roe Deer (Capreolus pygargus, Cervidae) in Central Yakutia. Zool Zh. 1998; 77:1080-1083.
  • [45]Boeskorov GG, Argunov AV, Kulemzina AI. On the taxonomic status of the Siberian Roe Deer in Yakutia. Probl Region Ekol. 2009; 3:103-107.
  • [46]Jo YS, Kim TW, Choi BJ, Oh HS. Current status of terrestrial mammals on Jeju Island. J Spec Res. 2012; 1:249-256.
  • [47]Palsboll PJ, Berube M, Allendorf FW. Identification of management units using population genetic data. Trends Ecol Evol. 2007; 22:11-16.
  • [48]Hebblewhite M, Miquelle DG, Murzin AA, Aramilev VV, Pikunov DG. Predicting potential habitat and population size for reintroduction of the Far Eastern leopards in the Russian Far East. Biol Conserv. 2011; 144:2403-2413.
  • [49]Abramov VK, Pikunov DG. The leopard in Far Eastern USSR and its protection. Biol MOEP Dept Biol. 1974; 79:5-15.
  • [50]Pikunov DG, Korkishko VG. The Far Eastern leopard. Dalnauka Press, Vladivostok; 1990.
  • [51]Miquelle DG, Smirnov EN, Merrill TW, Myslenkov AE, Quigley H, Hornocker MG et al.. Hierarchical spatial analysis of Amur tiger relationships to habitat and prey. In: Riding the Tiger. Tiger Conservation in Human-dominated Landscapes. Seidensticker J, Christie S, Jackson P, editors. Cambridge University Press, UK: Cambridge; 1999: p.71-99.
  • [52]Molinari-Jobin A, Zimmermann F, Ryser A, Breitenmoser-Würsten C, Capt S, Breitenmoser U et al.. Variation in diet, prey selectivity and home-range size of Eurasian lynx Lynx lynx in Switzerland. Wildlife Biol. 2007; 13:393-405.
  • [53]Peterson RO, Ciucci P. The wolf as a carnivore. In: Wolves: Behavior, Ecology, and Conservation. Mech LD, Boitani L, editors. University of Chicago Press, Chicago; 2003: p.106-108.
  • [54]Geist V. Deer of the world: Their evolution, behavior, and ecology. Stackpole Books, Mechanicsburg; 1998.
  • [55]Park SDE. Trypanotolerance in West African cattle and the population genetic effects of selection. PhD Thesis. University of Dublin, Smurfit Institute of Genetics, Dublin; 2001.
  • [56]Weir B, Cockerham C. Estimating F statistics for the analysis of population structure. Evolution. 1984; 38:1358-1370.
  • [57]Goudet J. FSTAT(version 1.2): a computer program to calculate F-statistics. J Hered. 1995; 86:485-486.
  • [58]Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P. MicroChecker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes. 2004; 4:535-538.
  • [59]Dakin EE, Avise JC. Microsatellite null alleles in parentage analysis. Heredity. 2004; 93:504-509.
  • [60]Peakall R, Smouse PE. GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes. 2006; 6:288-295.
  • [61]Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol. 2007; 16:1099-1106.
  • [62]Guo SW, Thompson EA. Performing the exact test of hardy weinberg proportion for multiple alleles. Biometrics. 1992; 48:361-372.
  • [63]Raymond M, Rousset F. Genepop (version 1.2): population genetics software for exact tests and ecumenicism. J Hered. 1995; 86:248-249.
  • [64]Wright S. The genetical structure of populations. Ann Hum Genet. 1931; 15:323-354.
  • [65]Chapuis MP, Estoup A. Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol. 2007; 24:621-631.
  • [66]Nei M, Tajima F, Tateno Y. Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol. 1983; 19:153-170.
  • [67]Ota T. DISPAN: genetic distance and phylogenetic analysis. Pennsylvania State University, University Park, Pennsylvania, USA; 1993.
  • [68]Sneath PHA, Sokal RR. Numerical taxonomy: The principles and practice of numerical classification. San Francisco, USA, W.H.Freeman and company; 1973.
  • [69]Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000; 155:945-959.
  • [70]Manni F, Guérard E, Heyer E. Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by ‘Monmonier’s algorithm’. Hum Biol. 2004; 76:173-190.
  • [71]Hardy OJ, Vekemans X. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes. 2002; 2:618-620.
  • [72]Hardy OJ, Charbonnel N, Fréville H, Heuertz M. Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics. 2003; 163:1467-1482.
  • [73]Luikart G, Allendorf FW, Cornuet JM, Sherwin WB. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered. 1998; 89:238-247.
  • [74]Cornuet JM, Luikart G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics. 1996; 144:2001-2014.
  • [75]Piry S, Luikart G, Cornuet JM. Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered. 1999; 90:502-503.
  • [76]Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatjin M, Freimer NB. Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci U S A. 1994; 91:3166-3170.
  • [77]Luikart G, Sherwin WB, Steele BM, Allendorf FW. Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol Ecol. 1998; 7:963-974.
  • [78]Harley EH. AGARst (version 2.0): A program for calculating allele frequences, GST and RST from microsatellite data. University of Cape Town, Cape Town, South Africa; 2001.
  文献评价指标  
  下载次数:67次 浏览次数:23次