期刊论文详细信息
BMC Bioinformatics
An unsupervised deep learning framework for predicting human essential genes from population and functional genomic data
Research
Troy M. LaPolice1  Yi-Fei Huang2 
[1] Department of Biology, Pennsylvania State University, 16802, University Park, PA, USA;Bioinformatics and Genomics Graduate Program, Pennsylvania State University, 16802, University Park, PA, USA;Huck Institutes of the Life Sciences, Pennsylvania State University, 16802, University Park, PA, USA;Department of Biology, Pennsylvania State University, 16802, University Park, PA, USA;Huck Institutes of the Life Sciences, Pennsylvania State University, 16802, University Park, PA, USA;
关键词: Deep Learning;    Unsupervised;    Essential Genes;    Loss of Function Intolerance;    Population Genomics;    Functional Genomics;   
DOI  :  10.1186/s12859-023-05481-z
 received in 2022-09-13, accepted in 2023-09-13,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundThe ability to accurately predict essential genes intolerant to loss-of-function (LOF) mutations can dramatically improve the identification of disease-associated genes. Recently, there have been numerous computational methods developed to predict human essential genes from population genomic data. While the existing methods are highly predictive of essential genes of long length, they have limited power in pinpointing short essential genes due to the sparsity of polymorphisms in the human genome.ResultsMotivated by the premise that population and functional genomic data may provide complementary evidence for gene essentiality, here we present an evolution-based deep learning model, DeepLOF, to predict essential genes in an unsupervised manner. Unlike previous population genetic methods, DeepLOF utilizes a novel deep learning framework to integrate both population and functional genomic data, allowing us to pinpoint short essential genes that can hardly be predicted from population genomic data alone. Compared with previous methods, DeepLOF shows unmatched performance in predicting ClinGen haploinsufficient genes, mouse essential genes, and essential genes in human cell lines. Notably, at a false positive rate of 5%, DeepLOF detects 50% more ClinGen haploinsufficient genes than previous methods. Furthermore, DeepLOF discovers 109 novel essential genes that are too short to be identified by previous methods.ConclusionThe predictive power of DeepLOF shows that it is a compelling computational method to aid in the discovery of essential genes.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202310110642666ZK.pdf 1776KB PDF download
Fig. 2 3377KB Image download
MediaObjects/12888_2023_5188_MOESM1_ESM.docx 44KB Other download
13690_2023_1170_Article_IEq51.gif 1KB Image download
13690_2023_1170_Article_IEq160.gif 1KB Image download
MediaObjects/40463_2023_663_MOESM2_ESM.pptx 184KB Other download
13690_2023_1170_Article_IEq163.gif 1KB Image download
Fig. 1 4172KB Image download
42004_2023_990_Article_IEq67.gif 1KB Image download
12951_2023_2095_Article_IEq4.gif 1KB Image download
13690_2023_1170_Article_IEq167.gif 1KB Image download
Fig. 4 988KB Image download
MediaObjects/41016_2023_340_MOESM2_ESM.docx 38KB Other download
MediaObjects/13068_2023_2396_MOESM8_ESM.docx 14KB Other download
40249_2023_1135_Article_IEq6.gif 1KB Image download
40249_2023_1135_Article_IEq7.gif 1KB Image download
40249_2023_1135_Article_IEq8.gif 1KB Image download
40249_2023_1135_Article_IEq9.gif 1KB Image download
12888_2023_5159_Article_IEq1.gif 1KB Image download
Fig. 3 671KB Image download
MediaObjects/12954_2023_869_MOESM1_ESM.docx 20KB Other download
13690_2023_1170_Article_IEq62.gif 1KB Image download
Fig. 8 1130KB Image download
MediaObjects/41408_2023_910_MOESM1_ESM.docx 353KB Other download
42004_2023_990_Article_IEq81.gif 1KB Image download
12951_2023_2095_Article_IEq5.gif 1KB Image download
Fig. 6 2149KB Image download
12951_2023_2095_Article_IEq6.gif 1KB Image download
MediaObjects/41408_2023_917_MOESM1_ESM.pdf 1732KB PDF download
Fig. 6 444KB Image download
42004_2023_990_Article_IEq87.gif 1KB Image download
42004_2023_990_Article_IEq88.gif 1KB Image download
Fig. 1 1571KB Image download
Fig. 1 649KB Image download
Fig. 6 2133KB Image download
13690_2023_1170_Article_IEq169.gif 1KB Image download
Fig. 2 253KB Image download
Fig. 4 426KB Image download
MediaObjects/42004_2023_990_MOESM1_ESM.pdf 870KB PDF download
13690_2023_1170_Article_IEq64.gif 1KB Image download
1097KB Image download
Fig. 3 1951KB Image download
Fig. 1 738KB Image download
Fig. 4 954KB Image download
12951_2023_2095_Article_IEq8.gif 1KB Image download
MediaObjects/42004_2023_1007_MOESM1_ESM.pdf 3331KB PDF download
Fig.1 290KB Image download
Fig. 1 252KB Image download
Fig. 6 494KB Image download
Fig. 1 202KB Image download
Fig. 4 61KB Image download
Fig. 2 171KB Image download
Fig. 5 333KB Image download
Fig. 1 169KB Image download
13690_2023_1170_Article_IEq172.gif 1KB Image download
MediaObjects/12974_2023_2867_MOESM1_ESM.jpg 71KB Other download
Fig. 1 316KB Image download
MediaObjects/41021_2023_279_MOESM1_ESM.docx 271KB Other download
Fig. 2 351KB Image download
Fig. 2 124KB Image download
Fig. 4 567KB Image download
MediaObjects/41408_2023_917_MOESM2_ESM.pdf 2729KB PDF download
40798_2023_628_Figg_HTML.png 5KB Image download
40798_2023_628_Figh_HTML.png 5KB Image download
Fig. 1 146KB Image download
Fig. 2 567KB Image download
Fig. 3 170KB Image download
Fig. 6 2788KB Image download
Fig. 2 151KB Image download
Fig. 4 964KB Image download
Fig. 6 980KB Image download
13690_2023_1170_Article_IEq173.gif 1KB Image download
MediaObjects/40249_2023_1135_MOESM7_ESM.docx 187KB Other download
MediaObjects/13100_2023_299_MOESM1_ESM.xlsx 94KB Other download
MediaObjects/12974_2023_2867_MOESM2_ESM.jpg 38KB Other download
Fig. 3 259KB Image download
Fig. 1 123KB Image download
Fig. 1 107KB Image download
Fig. 14 1554KB Image download
Fig. 2 342KB Image download
Fig. 3 150KB Image download
Fig. 8 133KB Image download
Fig. 1 132KB Image download
Fig. 1 82KB Image download
Fig. 1 204KB Image download
MediaObjects/12888_2023_5166_MOESM1_ESM.docx 28KB Other download
13690_2023_1170_Article_IEq66.gif 1KB Image download
13690_2023_1170_Article_IEq67.gif 1KB Image download
Fig. 1 149KB Image download
Fig. 1 86KB Image download
13690_2023_1170_Article_IEq70.gif 1KB Image download
Fig. 4 879KB Image download
13690_2023_1170_Article_IEq180.gif 1KB Image download
13690_2023_1170_Article_IEq72.gif 1KB Image download
MediaObjects/12974_2023_2894_MOESM1_ESM.docx 14968KB Other download
13690_2023_1170_Article_IEq182.gif 1KB Image download
13690_2023_1170_Article_IEq183.gif 1KB Image download
13690_2023_1170_Article_IEq184.gif 1KB Image download
Fig. 5 1051KB Image download
13690_2023_1170_Article_IEq185.gif 1KB Image download
Fig.4 335KB Image download
MediaObjects/12888_2023_5170_MOESM2_ESM.docx 955KB Other download
12888_2023_5142_Article_IEq1.gif 1KB Image download
MediaObjects/12302_2023_779_MOESM1_ESM.xlsx 79KB Other download
12888_2023_5142_Article_IEq2.gif 1KB Image download
Fig. 4 1320KB Image download
Fig. 5 1629KB Image download
12888_2023_5142_Article_IEq14.gif 1KB Image download
12888_2023_5142_Article_IEq15.gif 1KB Image download
12888_2023_5142_Article_IEq16.gif 1KB Image download
12888_2023_5142_Article_IEq17.gif 1KB Image download
12888_2023_5142_Article_IEq18.gif 1KB Image download
12888_2023_5142_Article_IEq21.gif 1KB Image download
13690_2023_1170_Article_IEq194.gif 1KB Image download
13690_2023_1170_Article_IEq195.gif 1KB Image download
13690_2023_1170_Article_IEq196.gif 1KB Image download
13690_2023_1170_Article_IEq198.gif 1KB Image download
40795_2023_760_Article_IEq27.gif 1KB Image download
13690_2023_1170_Article_IEq201.gif 1KB Image download
Fig. 7 4907KB Image download
40360_2023_687_Article_IEq1.gif 1KB Image download
Fig. 2 364KB Image download
MediaObjects/40360_2023_687_MOESM1_ESM.csv 29KB Other download
13690_2023_1170_Article_IEq79.gif 1KB Image download
Fig. 2 187KB Image download
MediaObjects/12944_2023_1922_MOESM1_ESM.docx 243KB Other download
Fig. 3 174KB Image download
MediaObjects/13100_2023_301_MOESM1_ESM.pdf 3800KB PDF download
13690_2023_1170_Article_IEq81.gif 1KB Image download
Fig. 3 2039KB Image download
Fig. 3 1298KB Image download
13690_2023_1170_Article_IEq224.gif 1KB Image download
Fig. 6 2055KB Image download
13690_2023_1170_Article_IEq97.gif 1KB Image download
MediaObjects/40337_2023_888_MOESM1_ESM.docx 15KB Other download
Fig. 3 502KB Image download
【 图 表 】

Fig. 3

13690_2023_1170_Article_IEq97.gif

Fig. 6

13690_2023_1170_Article_IEq224.gif

Fig. 3

Fig. 3

13690_2023_1170_Article_IEq81.gif

Fig. 3

Fig. 2

13690_2023_1170_Article_IEq79.gif

Fig. 2

40360_2023_687_Article_IEq1.gif

Fig. 7

13690_2023_1170_Article_IEq201.gif

40795_2023_760_Article_IEq27.gif

13690_2023_1170_Article_IEq198.gif

13690_2023_1170_Article_IEq196.gif

13690_2023_1170_Article_IEq195.gif

13690_2023_1170_Article_IEq194.gif

12888_2023_5142_Article_IEq21.gif

12888_2023_5142_Article_IEq18.gif

12888_2023_5142_Article_IEq17.gif

12888_2023_5142_Article_IEq16.gif

12888_2023_5142_Article_IEq15.gif

12888_2023_5142_Article_IEq14.gif

Fig. 5

Fig. 4

12888_2023_5142_Article_IEq2.gif

12888_2023_5142_Article_IEq1.gif

Fig.4

13690_2023_1170_Article_IEq185.gif

Fig. 5

13690_2023_1170_Article_IEq184.gif

13690_2023_1170_Article_IEq183.gif

13690_2023_1170_Article_IEq182.gif

13690_2023_1170_Article_IEq72.gif

13690_2023_1170_Article_IEq180.gif

Fig. 4

13690_2023_1170_Article_IEq70.gif

Fig. 1

Fig. 1

13690_2023_1170_Article_IEq67.gif

13690_2023_1170_Article_IEq66.gif

Fig. 1

Fig. 1

Fig. 1

Fig. 8

Fig. 3

Fig. 2

Fig. 14

Fig. 1

Fig. 1

Fig. 3

13690_2023_1170_Article_IEq173.gif

Fig. 6

Fig. 4

Fig. 2

Fig. 6

Fig. 3

Fig. 2

Fig. 1

40798_2023_628_Figh_HTML.png

40798_2023_628_Figg_HTML.png

Fig. 4

Fig. 2

Fig. 2

Fig. 1

13690_2023_1170_Article_IEq172.gif

Fig. 1

Fig. 5

Fig. 2

Fig. 4

Fig. 1

Fig. 6

Fig. 1

Fig.1

12951_2023_2095_Article_IEq8.gif

Fig. 4

Fig. 1

Fig. 3

13690_2023_1170_Article_IEq64.gif

Fig. 4

Fig. 2

13690_2023_1170_Article_IEq169.gif

Fig. 6

Fig. 1

Fig. 1

42004_2023_990_Article_IEq88.gif

42004_2023_990_Article_IEq87.gif

Fig. 6

12951_2023_2095_Article_IEq6.gif

Fig. 6

12951_2023_2095_Article_IEq5.gif

42004_2023_990_Article_IEq81.gif

Fig. 8

13690_2023_1170_Article_IEq62.gif

Fig. 3

12888_2023_5159_Article_IEq1.gif

40249_2023_1135_Article_IEq9.gif

40249_2023_1135_Article_IEq8.gif

40249_2023_1135_Article_IEq7.gif

40249_2023_1135_Article_IEq6.gif

Fig. 4

13690_2023_1170_Article_IEq167.gif

12951_2023_2095_Article_IEq4.gif

42004_2023_990_Article_IEq67.gif

Fig. 1

13690_2023_1170_Article_IEq163.gif

13690_2023_1170_Article_IEq160.gif

13690_2023_1170_Article_IEq51.gif

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  文献评价指标  
  下载次数:8次 浏览次数:0次