期刊论文详细信息
Frontiers in Artificial Intelligence
DeepAD: A deep learning application for predicting amyloid standardized uptake value ratio through PET for Alzheimer's prognosis
Artificial Intelligence
Sucheer Maddury1  Krish Desai1 
[1] null;
关键词: Alzheimer's disease;    PET;    amyloid;    convolutional neural network;    gradient boosted decision tree;   
DOI  :  10.3389/frai.2023.1091506
 received in 2022-11-07, accepted in 2023-01-10,  发布年份 2023
来源: Frontiers
PDF
【 摘 要 】

IntroductionAmyloid deposition is a vital biomarker in the process of Alzheimer's diagnosis. 18F-florbetapir PET scans can provide valuable imaging data to determine cortical amyloid quantities. However, the process is labor and doctor intensive, requiring extremely specialized education and resources that may not be accessible to everyone, making the amyloid calculation process inefficient. Deep learning is a rising tool in Alzheimer's research which could be used to determine amyloid deposition.Materials and methodsUsing data from the Alzheimer's Disease Neuroimaging Initiative, we identified 2,980 patients with PET imaging, clinical, and genetic data. We tested various ResNet, EfficientNet, and RegNet convolutional neural networks and later combined the best performing model with Gradient Boosting Decision Tree algorithms to predict standardized uptake value ratio (SUVR) of amyloid in each patient session. We tried several configurations to find the best model tuning for regression-to-SUVR.ResultsWe found that the RegNet X064 architecture combined with a grid search-tuned Gradient Boosting Decision Tree with 3 axial input slices and clinical and genetic data achieved the lowest loss. Using the mean-absolute-error metric, the loss converged to an MAE of 0.0441, equating to 96.4% accuracy across the 596-patient test set.DiscussionWe showed that this method is more consistent and accessible in comparison to human readers from previous studies, with lower margins of error and substantially faster calculation times. We implemented our deep learning model on to a web application named DeepAD which allows our diagnostic tool to be accessible. DeepAD could be used in hospitals and clinics with resource limitations for amyloid deposition and shows promise for more imaging tasks as well.

【 授权许可】

Unknown   
Copyright © 2023 Maddury and Desai.

【 预 览 】
附件列表
Files Size Format View
RO202310108442179ZK.pdf 834KB PDF download
  文献评价指标  
  下载次数:7次 浏览次数:0次