期刊论文详细信息
Frontiers in Microbiology
The core bacteriobiome of Côte d’Ivoire soils across three vegetation zones
Microbiology
Don A. Cowan1  Claude Ghislaine Kouadjo2  Romain Kouakou Fossou3  Anicet E. T. Ebou3  Chiguié Estelle Raïssa Amon3  Yao Casimir Brou3  Dominiqueua K. Koua3  Adolphe Zézé3  Don Rodrigue Rosin Voko Bi4 
[1] Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa;Laboratoire Central de Biotechnologies, Centre National de la Recherche Agronomique, Abidjan, Côte d’Ivoire;Laboratoire de Biotechnologies Végétale et Microbienne, UMRI Sciences Agronomiques et Génie rural, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Côte d'Ivoire;Unité de Formation et de Recherche en Agroforesterie, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire;
关键词: microbiome;    common core bacteriobiome;    bacteria;    16S rDNA;    Côte d’Ivoire;   
DOI  :  10.3389/fmicb.2023.1220655
 received in 2023-05-11, accepted in 2023-08-08,  发布年份 2023
来源: Frontiers
PDF
【 摘 要 】

The growing understanding that soil bacteria play a critical role in ecosystem servicing has led to a number of large-scale biogeographical surveys of soil microbial diversity. However, most of such studies have focused on northern hemisphere regions and little is known of either the detailed structure or function of soil microbiomes of sub-Saharan African countries. In this paper, we report the use of high-throughput amplicon sequencing analyses to investigate the biogeography of soil bacteria in soils of Côte d’Ivoire. 45 surface soil samples were collected from Côte d’Ivoire, representing all major biomes, and bacterial community composition was assessed by targeting the V4-V5 hypervariable region of the 16S ribosomal RNA gene. Causative relationships of both soil physicochemical properties and climatic data on bacterial community structure were infered. 48 phyla, 92 classes, 152 orders, 356 families, and 1,234 genera of bacteria were identified. The core bacteriobiome consisted of 10 genera ranked in the following order of total abundance: Gp6, Gaiella, Spartobacteria_genera_incertae_sedis, WPS-1_genera_incertae_sedis, Gp4, Rhodoplanes, Pseudorhodoplanes, Bradyrhizobium, Subdivision3_genera_incertae_sedis, and Gp3. Some of these genera, including Gp4 and WPS-1_genera_incertae_sedis, were unequally distributed between forest and savannah areas while other taxa (Bradyrhizobium and Rhodoplanes) were consistently found in all biomes. The distribution of the core genera, together with the 10 major phyla, was influenced by several environmental factors, including latitude, pH, Al and K. The main pattern of distribution that was observed for the core bacteriobiome was the vegetation-independent distribution scheme. In terms of predicted functions, all core bacterial taxa were involved in assimilatory sulfate reduction, while atmospheric dinitrogen (N2) reduction was only associated with the genus Bradyrhizobium. This work, which is one of the first such study to be undertaken at this scale in Côte d’Ivoire, provides insights into the distribution of bacterial taxa in Côte d’Ivoire soils, and the findings may serve as biological indicator for land management in Côte d’Ivoire.

【 授权许可】

Unknown   
Copyright © 2023 Amon, Fossou, Ebou, Koua, Kouadjo, Brou, Voko Bi, Cowan and Zézé.

【 预 览 】
附件列表
Files Size Format View
RO202310102463621ZK.pdf 5571KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:2次