| BMC Bioinformatics | |
| A knowledge graph approach to predict and interpret disease-causing gene interactions | |
| Research | |
| Ilaria Tiddi1  Michael Cochez2  Ann Nowé3  Chloé Terwagne4  Tom Lenaerts5  Alexandre Renaux5  | |
| [1] Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;Discovery Lab, Elsevier, Amsterdam, The Netherlands;Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles - Vrije Universiteit Brussel, Brussels, Belgium;Artificial Intelligence lab, Vrije Universiteit Brussel, Brussels, Belgium;Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles - Vrije Universiteit Brussel, Brussels, Belgium;Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium;Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles - Vrije Universiteit Brussel, Brussels, Belgium;Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium;Artificial Intelligence lab, Vrije Universiteit Brussel, Brussels, Belgium; | |
| 关键词: Disease genetics; Genetic interactions; Interpretable machine-learning; Knowledge graphs; | |
| DOI : 10.1186/s12859-023-05451-5 | |
| received in 2023-06-07, accepted in 2023-08-22, 发布年份 2023 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
BackgroundUnderstanding the impact of gene interactions on disease phenotypes is increasingly recognised as a crucial aspect of genetic disease research. This trend is reflected by the growing amount of clinical research on oligogenic diseases, where disease manifestations are influenced by combinations of variants on a few specific genes. Although statistical machine-learning methods have been developed to identify relevant genetic variant or gene combinations associated with oligogenic diseases, they rely on abstract features and black-box models, posing challenges to interpretability for medical experts and impeding their ability to comprehend and validate predictions. In this work, we present a novel, interpretable predictive approach based on a knowledge graph that not only provides accurate predictions of disease-causing gene interactions but also offers explanations for these results.ResultsWe introduce BOCK, a knowledge graph constructed to explore disease-causing genetic interactions, integrating curated information on oligogenic diseases from clinical cases with relevant biomedical networks and ontologies. Using this graph, we developed a novel predictive framework based on heterogenous paths connecting gene pairs. This method trains an interpretable decision set model that not only accurately predicts pathogenic gene interactions, but also unveils the patterns associated with these diseases. A unique aspect of our approach is its ability to offer, along with each positive prediction, explanations in the form of subgraphs, revealing the specific entities and relationships that led to each pathogenic prediction.ConclusionOur method, built with interpretability in mind, leverages heterogenous path information in knowledge graphs to predict pathogenic gene interactions and generate meaningful explanations. This not only broadens our understanding of the molecular mechanisms underlying oligogenic diseases, but also presents a novel application of knowledge graphs in creating more transparent and insightful predictors for genetic research.
【 授权许可】
CC BY
© BioMed Central Ltd., part of Springer Nature 2023
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202309156692333ZK.pdf | 2470KB | ||
| Fig. 4 | 38KB | Image | |
| Fig. 1 | 247KB | Image | |
| Fig. 3 | 2436KB | Image | |
| Fig. 3 | 1128KB | Image | |
| Fig. 1 | 977KB | Image | |
| Fig. 3 | 3423KB | Image | |
| 292KB | Image | ||
| Fig. 2 | 544KB | Image | |
| 13690_2023_1147_Article_IEq4.gif | 1KB | Image | |
| Fig. 2 | 216KB | Image | |
| MediaObjects/12888_2023_5026_MOESM1_ESM.docx | 25KB | Other | |
| Fig. 2 | 53KB | Image | |
| Fig. 1 | 2029KB | Image | |
| Fig. 6 | 4041KB | Image | |
| Fig. 4 | 263KB | Image | |
| Fig. 3 | 335KB | Image | |
| 12862_2023_2133_Article_IEq130.gif | 1KB | Image | |
| Fig. 5 | 217KB | Image | |
| Fig. 1 | 257KB | Image | |
| MediaObjects/12902_2023_1416_MOESM7_ESM.jpg | 1054KB | Other | |
| Fig. 6 | 634KB | Image | |
| MediaObjects/12888_2023_5109_MOESM1_ESM.docx | 17KB | Other | |
| Fig. 2 | 212KB | Image | |
| Fig. 8 | 252KB | Image | |
| Fig. 3 | 407KB | Image | |
| Fig. 3 | 133KB | Image | |
| Fig. 6 | 2367KB | Image | |
| MediaObjects/13690_2023_1171_MOESM1_ESM.docx | 15KB | Other | |
| MediaObjects/12902_2023_1423_MOESM1_ESM.pdf | 2536KB | ||
| Fig. 2 | 97KB | Image | |
| Fig. 3 | 64KB | Image | |
| Fig. 3 | 111KB | Image | |
| MediaObjects/41408_2023_889_MOESM1_ESM.docx | 128KB | Other | |
| MediaObjects/12888_2023_5016_MOESM1_ESM.docx | 84KB | Other | |
| Fig. 7 | 1396KB | Image | |
| Fig. 4 | 141KB | Image | |
| 955KB | Image | ||
| Fig. 7 | 3663KB | Image | |
| Fig. 6 | 271KB | Image | |
| Fig. 6 | 2821KB | Image | |
| Fig. 9 | 324KB | Image | |
| MediaObjects/13690_2023_1169_MOESM1_ESM.docx | 16KB | Other | |
| 40517_2023_266_Article_IEq10.gif | 1KB | Image | |
| MediaObjects/12888_2023_5016_MOESM2_ESM.docx | 14KB | Other | |
| 40517_2023_266_Article_IEq12.gif | 1KB | Image | |
| Fig. 2 | 122KB | Image | |
| 40517_2023_266_Article_IEq14.gif | 1KB | Image | |
| 40517_2023_266_Article_IEq15.gif | 1KB | Image | |
| 12888_2023_5115_Article_IEq2.gif | 1KB | Image | |
| Fig. 2 | 697KB | Image | |
| 40517_2023_266_Article_IEq19.gif | 1KB | Image | |
| MediaObjects/41408_2023_899_MOESM1_ESM.docx | 3828KB | Other | |
| MediaObjects/13690_2023_1164_MOESM1_ESM.pdf | 147KB | ||
| MediaObjects/12888_2023_5016_MOESM3_ESM.docx | 89KB | Other | |
| 743KB | Image | ||
| MediaObjects/13690_2023_1153_MOESM1_ESM.pdf | 170KB | ||
| Fig. 1 | 547KB | Image | |
| 40517_2023_266_Article_IEq26.gif | 1KB | Image | |
| MediaObjects/13690_2023_1153_MOESM2_ESM.pdf | 215KB | ||
| 40517_2023_266_Article_IEq28.gif | 1KB | Image | |
| 40517_2023_266_Article_IEq29.gif | 1KB | Image | |
| MediaObjects/13690_2023_1153_MOESM3_ESM.pdf | 229KB | ||
| MediaObjects/13690_2023_1153_MOESM6_ESM.pdf | 143KB | ||
| 40517_2023_266_Article_IEq41.gif | 1KB | Image | |
| 40517_2023_266_Article_IEq42.gif | 1KB | Image | |
| 40517_2023_266_Article_IEq43.gif | 1KB | Image | |
| 40517_2023_266_Article_IEq44.gif | 1KB | Image | |
| 40517_2023_266_Article_IEq45.gif | 1KB | Image | |
| 40517_2023_266_Article_IEq60.gif | 1KB | Image | |
| 40517_2023_266_Article_IEq61.gif | 1KB | Image | |
| 40517_2023_266_Article_IEq62.gif | 1KB | Image | |
| 40517_2023_266_Article_IEq63.gif | 1KB | Image | |
| 40517_2023_266_Article_IEq64.gif | 1KB | Image | |
| Fig. 1 | 267KB | Image | |
| 40517_2023_266_Article_IEq66.gif | 1KB | Image | |
| 40517_2023_266_Article_IEq67.gif | 1KB | Image |
【 图 表 】
40517_2023_266_Article_IEq67.gif
40517_2023_266_Article_IEq66.gif
Fig. 1
40517_2023_266_Article_IEq64.gif
40517_2023_266_Article_IEq63.gif
40517_2023_266_Article_IEq62.gif
40517_2023_266_Article_IEq61.gif
40517_2023_266_Article_IEq60.gif
40517_2023_266_Article_IEq45.gif
40517_2023_266_Article_IEq44.gif
40517_2023_266_Article_IEq43.gif
40517_2023_266_Article_IEq42.gif
40517_2023_266_Article_IEq41.gif
40517_2023_266_Article_IEq29.gif
40517_2023_266_Article_IEq28.gif
40517_2023_266_Article_IEq26.gif
Fig. 1
40517_2023_266_Article_IEq19.gif
Fig. 2
12888_2023_5115_Article_IEq2.gif
40517_2023_266_Article_IEq15.gif
40517_2023_266_Article_IEq14.gif
Fig. 2
40517_2023_266_Article_IEq12.gif
40517_2023_266_Article_IEq10.gif
Fig. 9
Fig. 6
Fig. 6
Fig. 7
Fig. 4
Fig. 7
Fig. 3
Fig. 3
Fig. 2
Fig. 6
Fig. 3
Fig. 3
Fig. 8
Fig. 2
Fig. 6
Fig. 1
Fig. 5
12862_2023_2133_Article_IEq130.gif
Fig. 3
Fig. 4
Fig. 6
Fig. 1
Fig. 2
Fig. 2
13690_2023_1147_Article_IEq4.gif
Fig. 2
Fig. 3
Fig. 1
Fig. 3
Fig. 3
Fig. 1
Fig. 4
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]
- [70]
- [71]
- [72]
- [73]
- [74]
- [75]
- [76]
- [77]
- [78]
- [79]
- [80]
- [81]
- [82]
- [83]
- [84]
- [85]
- [86]
- [87]
- [88]
- [89]
- [90]
- [91]
- [92]
- [93]
- [94]
- [95]
- [96]
- [97]
- [98]
- [99]
- [100]
- [101]
PDF