期刊论文详细信息
BMC Bioinformatics
A knowledge graph approach to predict and interpret disease-causing gene interactions
Research
Ilaria Tiddi1  Michael Cochez2  Ann Nowé3  Chloé Terwagne4  Tom Lenaerts5  Alexandre Renaux5 
[1] Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;Computer Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands;Discovery Lab, Elsevier, Amsterdam, The Netherlands;Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles - Vrije Universiteit Brussel, Brussels, Belgium;Artificial Intelligence lab, Vrije Universiteit Brussel, Brussels, Belgium;Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles - Vrije Universiteit Brussel, Brussels, Belgium;Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium;Interuniversity Institute of Bioinformatics in Brussels, Université Libre de Bruxelles - Vrije Universiteit Brussel, Brussels, Belgium;Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium;Artificial Intelligence lab, Vrije Universiteit Brussel, Brussels, Belgium;
关键词: Disease genetics;    Genetic interactions;    Interpretable machine-learning;    Knowledge graphs;   
DOI  :  10.1186/s12859-023-05451-5
 received in 2023-06-07, accepted in 2023-08-22,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundUnderstanding the impact of gene interactions on disease phenotypes is increasingly recognised as a crucial aspect of genetic disease research. This trend is reflected by the growing amount of clinical research on oligogenic diseases, where disease manifestations are influenced by combinations of variants on a few specific genes. Although statistical machine-learning methods have been developed to identify relevant genetic variant or gene combinations associated with oligogenic diseases, they rely on abstract features and black-box models, posing challenges to interpretability for medical experts and impeding their ability to comprehend and validate predictions. In this work, we present a novel, interpretable predictive approach based on a knowledge graph that not only provides accurate predictions of disease-causing gene interactions but also offers explanations for these results.ResultsWe introduce BOCK, a knowledge graph constructed to explore disease-causing genetic interactions, integrating curated information on oligogenic diseases from clinical cases with relevant biomedical networks and ontologies. Using this graph, we developed a novel predictive framework based on heterogenous paths connecting gene pairs. This method trains an interpretable decision set model that not only accurately predicts pathogenic gene interactions, but also unveils the patterns associated with these diseases. A unique aspect of our approach is its ability to offer, along with each positive prediction, explanations in the form of subgraphs, revealing the specific entities and relationships that led to each pathogenic prediction.ConclusionOur method, built with interpretability in mind, leverages heterogenous path information in knowledge graphs to predict pathogenic gene interactions and generate meaningful explanations. This not only broadens our understanding of the molecular mechanisms underlying oligogenic diseases, but also presents a novel application of knowledge graphs in creating more transparent and insightful predictors for genetic research.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202309156692333ZK.pdf 2470KB PDF download
Fig. 4 38KB Image download
Fig. 1 247KB Image download
Fig. 3 2436KB Image download
Fig. 3 1128KB Image download
Fig. 1 977KB Image download
Fig. 3 3423KB Image download
292KB Image download
Fig. 2 544KB Image download
13690_2023_1147_Article_IEq4.gif 1KB Image download
Fig. 2 216KB Image download
MediaObjects/12888_2023_5026_MOESM1_ESM.docx 25KB Other download
Fig. 2 53KB Image download
Fig. 1 2029KB Image download
Fig. 6 4041KB Image download
Fig. 4 263KB Image download
Fig. 3 335KB Image download
12862_2023_2133_Article_IEq130.gif 1KB Image download
Fig. 5 217KB Image download
Fig. 1 257KB Image download
MediaObjects/12902_2023_1416_MOESM7_ESM.jpg 1054KB Other download
Fig. 6 634KB Image download
MediaObjects/12888_2023_5109_MOESM1_ESM.docx 17KB Other download
Fig. 2 212KB Image download
Fig. 8 252KB Image download
Fig. 3 407KB Image download
Fig. 3 133KB Image download
Fig. 6 2367KB Image download
MediaObjects/13690_2023_1171_MOESM1_ESM.docx 15KB Other download
MediaObjects/12902_2023_1423_MOESM1_ESM.pdf 2536KB PDF download
Fig. 2 97KB Image download
Fig. 3 64KB Image download
Fig. 3 111KB Image download
MediaObjects/41408_2023_889_MOESM1_ESM.docx 128KB Other download
MediaObjects/12888_2023_5016_MOESM1_ESM.docx 84KB Other download
Fig. 7 1396KB Image download
Fig. 4 141KB Image download
955KB Image download
Fig. 7 3663KB Image download
Fig. 6 271KB Image download
Fig. 6 2821KB Image download
Fig. 9 324KB Image download
MediaObjects/13690_2023_1169_MOESM1_ESM.docx 16KB Other download
40517_2023_266_Article_IEq10.gif 1KB Image download
MediaObjects/12888_2023_5016_MOESM2_ESM.docx 14KB Other download
40517_2023_266_Article_IEq12.gif 1KB Image download
Fig. 2 122KB Image download
40517_2023_266_Article_IEq14.gif 1KB Image download
40517_2023_266_Article_IEq15.gif 1KB Image download
12888_2023_5115_Article_IEq2.gif 1KB Image download
Fig. 2 697KB Image download
40517_2023_266_Article_IEq19.gif 1KB Image download
MediaObjects/41408_2023_899_MOESM1_ESM.docx 3828KB Other download
MediaObjects/13690_2023_1164_MOESM1_ESM.pdf 147KB PDF download
MediaObjects/12888_2023_5016_MOESM3_ESM.docx 89KB Other download
743KB Image download
MediaObjects/13690_2023_1153_MOESM1_ESM.pdf 170KB PDF download
Fig. 1 547KB Image download
40517_2023_266_Article_IEq26.gif 1KB Image download
MediaObjects/13690_2023_1153_MOESM2_ESM.pdf 215KB PDF download
40517_2023_266_Article_IEq28.gif 1KB Image download
40517_2023_266_Article_IEq29.gif 1KB Image download
MediaObjects/13690_2023_1153_MOESM3_ESM.pdf 229KB PDF download
MediaObjects/13690_2023_1153_MOESM6_ESM.pdf 143KB PDF download
40517_2023_266_Article_IEq41.gif 1KB Image download
40517_2023_266_Article_IEq42.gif 1KB Image download
40517_2023_266_Article_IEq43.gif 1KB Image download
40517_2023_266_Article_IEq44.gif 1KB Image download
40517_2023_266_Article_IEq45.gif 1KB Image download
40517_2023_266_Article_IEq60.gif 1KB Image download
40517_2023_266_Article_IEq61.gif 1KB Image download
40517_2023_266_Article_IEq62.gif 1KB Image download
40517_2023_266_Article_IEq63.gif 1KB Image download
40517_2023_266_Article_IEq64.gif 1KB Image download
Fig. 1 267KB Image download
40517_2023_266_Article_IEq66.gif 1KB Image download
40517_2023_266_Article_IEq67.gif 1KB Image download
【 图 表 】

40517_2023_266_Article_IEq67.gif

40517_2023_266_Article_IEq66.gif

Fig. 1

40517_2023_266_Article_IEq64.gif

40517_2023_266_Article_IEq63.gif

40517_2023_266_Article_IEq62.gif

40517_2023_266_Article_IEq61.gif

40517_2023_266_Article_IEq60.gif

40517_2023_266_Article_IEq45.gif

40517_2023_266_Article_IEq44.gif

40517_2023_266_Article_IEq43.gif

40517_2023_266_Article_IEq42.gif

40517_2023_266_Article_IEq41.gif

40517_2023_266_Article_IEq29.gif

40517_2023_266_Article_IEq28.gif

40517_2023_266_Article_IEq26.gif

Fig. 1

40517_2023_266_Article_IEq19.gif

Fig. 2

12888_2023_5115_Article_IEq2.gif

40517_2023_266_Article_IEq15.gif

40517_2023_266_Article_IEq14.gif

Fig. 2

40517_2023_266_Article_IEq12.gif

40517_2023_266_Article_IEq10.gif

Fig. 9

Fig. 6

Fig. 6

Fig. 7

Fig. 4

Fig. 7

Fig. 3

Fig. 3

Fig. 2

Fig. 6

Fig. 3

Fig. 3

Fig. 8

Fig. 2

Fig. 6

Fig. 1

Fig. 5

12862_2023_2133_Article_IEq130.gif

Fig. 3

Fig. 4

Fig. 6

Fig. 1

Fig. 2

Fig. 2

13690_2023_1147_Article_IEq4.gif

Fig. 2

Fig. 3

Fig. 1

Fig. 3

Fig. 3

Fig. 1

Fig. 4

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  • [82]
  • [83]
  • [84]
  • [85]
  • [86]
  • [87]
  • [88]
  • [89]
  • [90]
  • [91]
  • [92]
  • [93]
  • [94]
  • [95]
  • [96]
  • [97]
  • [98]
  • [99]
  • [100]
  • [101]
  文献评价指标  
  下载次数:7次 浏览次数:2次