期刊论文详细信息
BMC Bioinformatics
Automatic disease prediction from human gut metagenomic data using boosting GraphSAGE
Research
Namita Khanna1  K. Syama2  J. Angel Arul Jothi2 
[1] Department of Biotechnology, Birla Institute of Technology and Science Pilani Dubai Campus, Dubai International Academic City, Dubai, UAE;Department of Computer Science, Birla Institute of Technology and Science Pilani Dubai Campus, Dubai International Academic City, Dubai, UAE;
关键词: Metagenomics;    Disease prediction;    Ensemble GNN;    GraphSAGE;    Machine learning;    Deep learning;   
DOI  :  10.1186/s12859-023-05251-x
 received in 2023-01-27, accepted in 2023-03-23,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundThe human microbiome plays a critical role in maintaining human health. Due to the recent advances in high-throughput sequencing technologies, the microbiome profiles present in the human body have become publicly available. Hence, many works have been done to analyze human microbiome profiles. These works have identified that different microbiome profiles are present in healthy and sick individuals for different diseases. Recently, several computational methods have utilized the microbiome profiles to automatically diagnose and classify the host phenotype.ResultsIn this work, a novel deep learning framework based on boosting GraphSAGE is proposed for automatic prediction of diseases from metagenomic data. The proposed framework has two main components, (a). Metagenomic Disease graph (MD-graph) construction module, (b). Disease prediction Network (DP-Net) module. The graph construction module constructs a graph by considering each metagenomic sample as a node in the graph. The graph captures the relationship between the samples using a proximity measure. The DP-Net consists of a boosting GraphSAGE model which predicts the status of a sample as sick or healthy. The effectiveness of the proposed method is verified using real and synthetic datasets corresponding to diseases like inflammatory bowel disease and colorectal cancer. The proposed model achieved a highest AUC of 93%, Accuracy of 95%, F1-score of 95%, AUPRC of 95% for the real inflammatory bowel disease dataset and a best AUC of 90%, Accuracy of 91%, F1-score of 87% and AUPRC of 93% for the real colorectal cancer dataset.ConclusionThe proposed framework outperforms other machine learning and deep learning models in terms of classification accuracy, AUC, F1-score and AUPRC for both synthetic and real metagenomic data.

【 授权许可】

CC BY   
© The Author(s) 2023. corrected publication 2023

【 预 览 】
附件列表
Files Size Format View
RO202309156251730ZK.pdf 3031KB PDF download
Fig. 2 865KB Image download
Fig. 4 1440KB Image download
42490_2023_74_Article_IEq62.gif 1KB Image download
13690_2023_1154_Article_IEq18.gif 1KB Image download
Fig. 3 64KB Image download
Fig. 1 1889KB Image download
12888_2023_5113_Article_IEq9.gif 1KB Image download
Fig. 3 511KB Image download
Fig. 4 38KB Image download
MediaObjects/12974_2023_2859_MOESM2_ESM.xlsx 28KB Other download
Fig. 6 777KB Image download
Fig. 4 936KB Image download
Fig. 2 1276KB Image download
40538_2023_456_Article_IEq2.gif 1KB Image download
Fig. 1 204KB Image download
Fig. 2 609KB Image download
Fig. 1 239KB Image download
Fig. 4 34KB Image download
MediaObjects/12888_2023_5034_MOESM1_ESM.docx 38KB Other download
Fig. 2 103KB Image download
MediaObjects/40798_2023_610_MOESM1_ESM.docx 44KB Other download
Fig. 6 1034KB Image download
Fig. 1 86KB Image download
Fig. 2 482KB Image download
Fig. 2 478KB Image download
MediaObjects/12888_2023_5000_MOESM1_ESM.docx 20KB Other download
MediaObjects/12888_2023_5081_MOESM7_ESM.pdf 96KB PDF download
12862_2023_2133_Article_IEq56.gif 1KB Image download
Fig. 2 198KB Image download
MediaObjects/12951_2023_1994_MOESM2_ESM.pdf 555KB PDF download
Fig. 5 37KB Image download
Fig. 2 101KB Image download
12862_2023_2133_Article_IEq61.gif 1KB Image download
Fig. 1 800KB Image download
292KB Image download
Fig. 1 1128KB Image download
Fig. 1 620KB Image download
Fig. 4 1502KB Image download
Fig. 11 593KB Image download
12862_2023_2148_Article_IEq5.gif 1KB Image download
Fig. 1 245KB Image download
MediaObjects/41408_2023_892_MOESM6_ESM.tif 1618KB Other download
Fig. 1 427KB Image download
Fig. 1 416KB Image download
Fig. 1 133KB Image download
Fig. 1 147KB Image download
Fig. 2 1050KB Image download
Fig. 2 544KB Image download
Fig. 1 761KB Image download
Fig. 1 38KB Image download
Fig. 2 40KB Image download
Fig. 6 478KB Image download
12862_2023_2133_Article_IEq80.gif 1KB Image download
Fig. 1 1240KB Image download
Fig. 5 2407KB Image download
Fig. 4 190KB Image download
13690_2023_1147_Article_IEq6.gif 1KB Image download
13690_2023_1147_Article_IEq8.gif 1KB Image download
13690_2023_1147_Article_IEq9.gif 1KB Image download
13690_2023_1147_Article_IEq11.gif 1KB Image download
Fig. 1 175KB Image download
Fig. 1 718KB Image download
Fig. 2 86KB Image download
13690_2023_1147_Article_IEq14.gif 1KB Image download
Fig. 3 57KB Image download
13690_2023_1147_Article_IEq16.gif 1KB Image download
MediaObjects/12888_2023_5071_MOESM1_ESM.docx 33KB Other download
13690_2023_1147_Article_IEq18.gif 1KB Image download
Fig. 1 257KB Image download
Fig. 7 48KB Image download
MediaObjects/12888_2023_5047_MOESM6_ESM.docx 19KB Other download
Fig. 6 634KB Image download
Fig. 3 232KB Image download
Fig. 2 118KB Image download
Fig. 2 2468KB Image download
Fig. 3 582KB Image download
Fig. 3 166KB Image download
Fig. 4 726KB Image download
MediaObjects/12888_2023_5109_MOESM2_ESM.docx 12KB Other download
Fig. 4 219KB Image download
Fig. 2 593KB Image download
Fig. 16 674KB Image download
Fig. 8 593KB Image download
Fig. 2 462KB Image download
MediaObjects/12862_2023_2133_MOESM13_ESM.pdf 359KB PDF download
Fig. 1 163KB Image download
MediaObjects/40249_2023_1124_MOESM1_ESM.docx 16KB Other download
Fig. 9 589KB Image download
Fig. 2 98KB Image download
Fig. 17 251KB Image download
Fig. 3 133KB Image download
Fig. 6 2367KB Image download
MediaObjects/13690_2023_1171_MOESM1_ESM.docx 15KB Other download
MediaObjects/12902_2023_1423_MOESM1_ESM.pdf 2536KB PDF download
Fig. 2 97KB Image download
Fig. 3 64KB Image download
Fig. 3 111KB Image download
MediaObjects/41408_2023_889_MOESM1_ESM.docx 128KB Other download
MediaObjects/12888_2023_5016_MOESM1_ESM.docx 84KB Other download
Fig. 7 1396KB Image download
Fig. 4 141KB Image download
Fig. 3 121KB Image download
Fig. 2 563KB Image download
Fig. 5 86KB Image download
Fig. 11 1966KB Image download
Fig. 1 538KB Image download
MediaObjects/40560_2023_680_MOESM1_ESM.docx 144KB Other download
Fig. 7 234KB Image download
Fig. 5 1011KB Image download
Fig. 3 924KB Image download
Fig. 1 225KB Image download
Fig. 5 634KB Image download
955KB Image download
Fig. 6 271KB Image download
Fig. 6 2821KB Image download
Fig. 6 446KB Image download
MediaObjects/12951_2023_1985_MOESM1_ESM.pdf 2132KB PDF download
Fig. 4 1862KB Image download
Fig. 1 295KB Image download
Fig. 1 313KB Image download
MediaObjects/41408_2023_890_MOESM1_ESM.docx 3614KB Other download
MediaObjects/40249_2023_1120_MOESM1_ESM.tif 1308KB Other download
Fig. 2 697KB Image download
Fig. 2 139KB Image download
Fig. 1 473KB Image download
12888_2023_5115_Article_IEq1.gif 1KB Image download
Table 1 164KB Table download
MediaObjects/12951_2020_626_MOESM1_ESM.docx 4431KB Other download
MediaObjects/12954_2023_832_MOESM1_ESM.docx 64KB Other download
Fig. 3 1103KB Image download
Fig. 2 102KB Image download
Fig. 3 155KB Image download
MediaObjects/13690_2023_1169_MOESM1_ESM.docx 16KB Other download
40517_2023_266_Article_IEq10.gif 1KB Image download
MediaObjects/12888_2023_5016_MOESM2_ESM.docx 14KB Other download
40517_2023_266_Article_IEq12.gif 1KB Image download
Fig. 2 122KB Image download
40517_2023_266_Article_IEq14.gif 1KB Image download
40517_2023_266_Article_IEq15.gif 1KB Image download
Fig. 1 547KB Image download
40517_2023_266_Article_IEq26.gif 1KB Image download
MediaObjects/13690_2023_1153_MOESM2_ESM.pdf 215KB PDF download
40517_2023_266_Article_IEq28.gif 1KB Image download
40517_2023_266_Article_IEq29.gif 1KB Image download
MediaObjects/13690_2023_1153_MOESM3_ESM.pdf 229KB PDF download
40517_2023_266_Article_IEq31.gif 1KB Image download
40517_2023_266_Article_IEq32.gif 1KB Image download
MediaObjects/13690_2023_1153_MOESM4_ESM.pdf 287KB PDF download
40517_2023_266_Article_IEq34.gif 1KB Image download
【 图 表 】

40517_2023_266_Article_IEq34.gif

40517_2023_266_Article_IEq32.gif

40517_2023_266_Article_IEq31.gif

40517_2023_266_Article_IEq29.gif

40517_2023_266_Article_IEq28.gif

40517_2023_266_Article_IEq26.gif

Fig. 1

40517_2023_266_Article_IEq15.gif

40517_2023_266_Article_IEq14.gif

Fig. 2

40517_2023_266_Article_IEq12.gif

40517_2023_266_Article_IEq10.gif

Fig. 3

Fig. 2

Fig. 3

12888_2023_5115_Article_IEq1.gif

Fig. 1

Fig. 2

Fig. 2

Fig. 1

Fig. 1

Fig. 4

Fig. 6

Fig. 6

Fig. 6

Fig. 5

Fig. 1

Fig. 3

Fig. 5

Fig. 7

Fig. 1

Fig. 11

Fig. 5

Fig. 2

Fig. 3

Fig. 4

Fig. 7

Fig. 3

Fig. 3

Fig. 2

Fig. 6

Fig. 3

Fig. 17

Fig. 2

Fig. 9

Fig. 1

Fig. 2

Fig. 8

Fig. 16

Fig. 2

Fig. 4

Fig. 4

Fig. 3

Fig. 3

Fig. 2

Fig. 2

Fig. 3

Fig. 6

Fig. 7

Fig. 1

13690_2023_1147_Article_IEq18.gif

13690_2023_1147_Article_IEq16.gif

Fig. 3

13690_2023_1147_Article_IEq14.gif

Fig. 2

Fig. 1

Fig. 1

13690_2023_1147_Article_IEq11.gif

13690_2023_1147_Article_IEq9.gif

13690_2023_1147_Article_IEq8.gif

13690_2023_1147_Article_IEq6.gif

Fig. 4

Fig. 5

Fig. 1

12862_2023_2133_Article_IEq80.gif

Fig. 6

Fig. 2

Fig. 1

Fig. 1

Fig. 2

Fig. 2

Fig. 1

Fig. 1

Fig. 1

Fig. 1

Fig. 1

12862_2023_2148_Article_IEq5.gif

Fig. 11

Fig. 4

Fig. 1

Fig. 1

Fig. 1

12862_2023_2133_Article_IEq61.gif

Fig. 2

Fig. 5

Fig. 2

12862_2023_2133_Article_IEq56.gif

Fig. 2

Fig. 2

Fig. 1

Fig. 6

Fig. 2

Fig. 4

Fig. 1

Fig. 2

Fig. 1

40538_2023_456_Article_IEq2.gif

Fig. 2

Fig. 4

Fig. 6

Fig. 4

Fig. 3

12888_2023_5113_Article_IEq9.gif

Fig. 1

Fig. 3

13690_2023_1154_Article_IEq18.gif

42490_2023_74_Article_IEq62.gif

Fig. 4

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  文献评价指标  
  下载次数:20次 浏览次数:0次