期刊论文详细信息
EJNMMI Physics
Deep learning approximation of attenuation maps for myocardial perfusion SPECT with an IQ·\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varvec{\cdot {}}$$\end{document}SPECT collimator
Original Research
Reinhard Zabel1  Tamino Huxohl2  Gopesh Patel2  Wolfgang Burchert2 
[1] Institute of Nuclear Medicine, Hospital Lippe, Lippe, Germany;Institute of Radiology, Nuclear Medicine and Molecular Imaging, Heart and Diabetes Center North Rhine-Westphalia, University Hospital of the Ruhr University Bochum, Bad Oeynhausen, Germany;
关键词: Deep learning;    SPECT;    Myocardial perfusion imaging;    Attenuation correction;   
DOI  :  10.1186/s40658-023-00568-1
 received in 2023-04-05, accepted in 2023-08-07,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundThe use of CT images for attenuation correction of myocardial perfusion imaging with single photon emission computer tomography (SPECT) increases diagnostic confidence. However, acquiring a CT image registered to a SPECT image is often not possible because most scanners are SPECT-only. It is possible to approximate attenuation maps using deep learning, but this has not yet been shown to work for a SPECT scanner with an IQ·\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varvec{\cdot {}}$$\end{document}SPECT collimator. This study investigates whether it is possible to approximate attenuation maps from non-attenuation-corrected (nAC) reconstructions acquired with a SPECT scanner equipped with an IQ·\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varvec{\cdot {}}$$\end{document}SPECT collimator.MethodsAttenuation maps and reconstructions were acquired retrospectively for 150 studies. A U–Net was trained to predict attenuation maps from nAC reconstructions using the conditional generative adversarial network framework. Predicted attenuation maps are compared to real attenuation maps using the normalized mean absolute error (NMAE). Attenuation-corrected reconstructions were computed, and the resulting polar maps were compared by pixel and by average perfusion per segment using the absolute percent error (APE). The training and evaluation code is available at https://gitlab.ub.uni-bielefeld.de/thuxohl/mu-map.ResultsPredicted attenuation maps are similar to real attenuation maps, achieving an NMAE of 0.020±0.007. The same is true for polar maps generated from reconstructions with predicted attenuation maps compared to CT-based attenuation maps. Their pixel-wise absolute distance is 3.095±3.199, and the segment-wise APE is 1.155±0.769.ConclusionsIt is feasible to approximate attenuation maps from nAC reconstructions acquired by a scanner with an IQ·\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$\varvec{\cdot {}}$$\end{document}SPECT collimator using deep learning.

【 授权许可】

CC BY   
© Springer Nature Switzerland AG 2023

【 预 览 】
附件列表
Files Size Format View
RO202309154353791ZK.pdf 2505KB PDF download
Fig. 2 319KB Image download
12862_2023_2133_Article_IEq56.gif 1KB Image download
Fig. 1 80KB Image download
Fig. 4 1502KB Image download
Fig. 1 245KB Image download
Fig. 1 133KB Image download
Fig. 1 761KB Image download
Fig. 6 478KB Image download
12862_2023_2133_Article_IEq80.gif 1KB Image download
Fig. 1 1240KB Image download
Fig. 5 2407KB Image download
Fig. 4 190KB Image download
Fig. 2 386KB Image download
Fig. 5 998KB Image download
Fig. 4 695KB Image download
Fig. 1 47KB Image download
MediaObjects/13750_2020_190_MOESM2_ESM.xlsx 175KB Other download
Fig. 2 516KB Image download
Fig. 3 933KB Image download
Fig. 2 255KB Image download
Fig. 6 2060KB Image download
Fig. 7 48KB Image download
MediaObjects/12902_2023_1416_MOESM7_ESM.jpg 1054KB Other download
Fig. 4 153KB Image download
Fig. 6 447KB Image download
MediaObjects/41408_2023_892_MOESM10_ESM.xlsx 11KB Other download
Fig. 2 57KB Image download
MediaObjects/41408_2023_892_MOESM12_ESM.xlsx 22KB Other download
MediaObjects/41408_2023_892_MOESM13_ESM.xlsx 14KB Other download
Fig. 1 650KB Image download
Fig. 2 68KB Image download
MediaObjects/13750_2020_190_MOESM6_ESM.xlsx 34KB Other download
Fig. 3 321KB Image download
Fig. 4 42KB Image download
Fig. 3 162KB Image download
Fig. 5 44KB Image download
MediaObjects/12888_2023_5047_MOESM1_ESM.docx 26KB Other download
Fig. 2 151KB Image download
MediaObjects/12888_2023_5047_MOESM2_ESM.docx 19KB Other download
Fig. 7 259KB Image download
Fig. 3 311KB Image download
MediaObjects/12974_2023_2873_MOESM3_ESM.tif 1195KB Other download
1520KB Image download
Fig. 3 166KB Image download
Fig. 2 72KB Image download
MediaObjects/12888_2023_5047_MOESM3_ESM.docx 27KB Other download
12888_2023_5124_Article_IEq1.gif 1KB Image download
12888_2023_5124_Article_IEq2.gif 1KB Image download
MediaObjects/12888_2023_5047_MOESM6_ESM.docx 19KB Other download
MediaObjects/12888_2023_5047_MOESM7_ESM.docx 19KB Other download
MediaObjects/12888_2023_5047_MOESM8_ESM.docx 19KB Other download
Fig. 4 1975KB Image download
MediaObjects/12902_2023_1398_MOESM2_ESM.xlsx 36KB Other download
Fig. 1 160KB Image download
Fig. 1 322KB Image download
MediaObjects/12888_2023_4955_MOESM1_ESM.docx 12KB Other download
Fig. 2 165KB Image download
Fig. 2 373KB Image download
Fig. 6 634KB Image download
Fig. 3 232KB Image download
MediaObjects/12888_2023_5109_MOESM1_ESM.docx 17KB Other download
【 图 表 】

Fig. 3

Fig. 6

Fig. 2

Fig. 2

Fig. 1

Fig. 1

Fig. 4

12888_2023_5124_Article_IEq2.gif

12888_2023_5124_Article_IEq1.gif

Fig. 2

Fig. 3

Fig. 3

Fig. 7

Fig. 2

Fig. 5

Fig. 3

Fig. 4

Fig. 3

Fig. 2

Fig. 1

Fig. 2

Fig. 6

Fig. 4

Fig. 7

Fig. 6

Fig. 2

Fig. 3

Fig. 2

Fig. 1

Fig. 4

Fig. 5

Fig. 2

Fig. 4

Fig. 5

Fig. 1

12862_2023_2133_Article_IEq80.gif

Fig. 6

Fig. 1

Fig. 1

Fig. 1

Fig. 4

Fig. 1

12862_2023_2133_Article_IEq56.gif

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  文献评价指标  
  下载次数:6次 浏览次数:0次